Math 400: Discussion Questions \# 1 ${ }^{1}$

A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. How does the proof that $\sqrt{2}$ is irrational change if we consider $\sqrt{3}$? $\sqrt{4}$?
2. Why is neither \mathbb{N} nor \mathbb{Z} a field?
3. The sets \mathbb{N} and \mathbb{Z} have a natural order. So does \mathbb{Q}. How about \mathbb{R} ? How about \mathbb{Z}_{12}, the numbers $\{0,1,2, \ldots, 11\}$ under addition modulo 12 ?
4. How can we construct \mathbb{R} from \mathbb{Q} ?
5. Which of these sets contain $\sqrt{2}$?
(a) $A=\left\{x \in \mathbb{Q}: x^{2}<3\right\}$
(b) $B=\left\{x \in \mathbb{R}: x^{2}<3\right\}$
(c) $C=A \cup B$
(d) $D=A \cap B$
(e) $E=A^{c}$
6. $[\mathrm{T} / \mathrm{F}]$ For every pair of real numbers a and $b,|a+b| \leq|a|+|b|$.
7. $[\mathrm{T} / \mathrm{F}]$ For every pair of real numbers a and $b,|a+b| \leq|a|-|b|$.
8. $[\mathrm{T} / \mathrm{F}]$ For every pair of real numbers a and $b,|a-b| \leq|a|+|b|$.
9. $[\mathrm{T} / \mathrm{F}]$ For every pair of real numbers a and $b,|a-b| \leq|a|-|b|$.
10. $[\mathrm{T} / \mathrm{F}]$ Given $a, b \in \mathbb{R}$, we have $a=b$ if for some $\epsilon>0$, it follows $|a-b|<\epsilon$.
11. $[\mathrm{T} / \mathrm{F}]$ Given $a, b \in \mathbb{R}$, we have $a=b$ only if for some $\epsilon>0$, it follows $|a-b|<\epsilon$.
12. $[\mathrm{T} / \mathrm{F}]$ Given $a, b \in \mathbb{R}$, we have $a=b$ if for every $\epsilon>0$, it follows $|a-b|<\epsilon$.
13. $[\mathrm{T} / \mathrm{F}]$ Given $a, b \in \mathbb{R}$, we have $a=b$ only if for every $\epsilon>0$, it follows $|a-b|<\epsilon$.
14. Let $A=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$. Which, if any, of these numbers is an upper bound for $A: \frac{1}{2}, 1,6$?
15. What is the relation between maximum and supremum of a set? When are they not equal?
16. $[\mathrm{T} / \mathrm{F}]$ An upper bound for a set $A \subset \mathbb{R}$ is necessarily an element of A.
17. $[\mathrm{T} / \mathrm{F}]$ A least upper bound for a set $A \subset \mathbb{R}$ is necessarily an element of A.

[^0]18. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at least one maximum. What if $A \subset \mathbb{N}$? $A \subset \mathbb{Q}$?
19. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at most one maximum.
20. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at least one upper bound.
21. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at most one upper bound.
22. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at least one least upper bound.
23. $[\mathrm{T} / \mathrm{F}] \mathrm{A}$ set $A \subset \mathbb{R}$ has at most one least upper bound.

[^0]: ${ }^{1}$ Thanks to Stephen Abbott and Annalisa Crannell

