A statement listed with [T/F] is a True/False statement that requires a proof or a counterexample, as appropriate.

- 1. How does the proof that $\sqrt{2}$ is irrational change if we consider $\sqrt{3}$? $\sqrt{4}$?
- 2. Why is neither \mathbb{N} nor \mathbb{Z} a field?
- 3. The sets \mathbb{N} and \mathbb{Z} have a natural order. So does \mathbb{Q} . How about \mathbb{R} ? How about \mathbb{Z}_{12} , the numbers $\{0, 1, 2, \ldots, 11\}$ under addition modulo 12?
- 4. How can we construct \mathbb{R} from \mathbb{Q} ?
- 5. Which of these sets contain $\sqrt{2}$?
 - (a) $A = \{x \in \mathbb{Q} : x^2 < 3\}$ (b) $B = \{x \in \mathbb{R} : x^2 < 3\}$ (c) $C = A \cup B$ (d) $D = A \cap B$ (e) $E = A^c$
- 6. [T/F] For every pair of real numbers a and b, $|a + b| \le |a| + |b|$.
- 7. [T/F] For every pair of real numbers a and b, $|a + b| \le |a| |b|$.
- 8. [T/F] For every pair of real numbers a and b, $|a b| \le |a| + |b|$.
- 9. [T/F] For every pair of real numbers a and b, $|a b| \le |a| |b|$.
- 10. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for some $\epsilon > 0$, it follows $|a b| < \epsilon$.
- 11. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for some $\epsilon > 0$, it follows $|a b| < \epsilon$.
- 12. [T/F] Given $a, b \in \mathbb{R}$, we have a = b if for every $\epsilon > 0$, it follows $|a b| < \epsilon$.
- 13. [T/F] Given $a, b \in \mathbb{R}$, we have a = b only if for every $\epsilon > 0$, it follows $|a b| < \epsilon$.
- 14. Let $A = \{\frac{n}{n+1} : n \in \mathbb{N}\}$. Which, if any, of these numbers is an upper bound for $A: \frac{1}{2}, 1, 6$?
- 15. What is the relation between maximum and supremum of a set? When are they not equal?
- 16. [T/F] An upper bound for a set $A \subset \mathbb{R}$ is necessarily an element of A.
- 17. [T/F] A least upper bound for a set $A \subset \mathbb{R}$ is necessarily an element of A.

¹Thanks to Stephen Abbott and Annalisa Crannell

- 18. [T/F] A set $A \subset \mathbb{R}$ has at least one maximum. What if $A \subset \mathbb{N}$? $A \subset \mathbb{Q}$?
- 19. [T/F] A set $A \subset \mathbb{R}$ has at most one maximum.
- 20. [T/F] A set $A \subset \mathbb{R}$ has at least one upper bound.
- 21. [T/F] A set $A \subset \mathbb{R}$ has at most one upper bound.
- 22. [T/F] A set $A \subset \mathbb{R}$ has at least one least upper bound.
- 23. [T/F] A set $A \subset \mathbb{R}$ has at most one least upper bound.