Math 400: Discussion Questions \# 10

A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. How is the Mean Value Theorem reduced to Rolle's theorem? Explain and show the details.
2. Let f and g be differentiable functions on an interval I. Suppose $f^{\prime}=g^{\prime}$ on I. Show that $f(x)=g(x)+k$ for a fixed constant k.
3. Show that $e^{x}=1-x$ has only one solution in \mathbb{R}.
4. Use MVT to show that $\ln (1+x) \leq x$ for any $x \geq 0$.
5. Use MVT to show that $\sin x<x$ for any $x \in\left(0, \frac{\pi}{2}\right]$.
6. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}$.
7. $[\mathrm{T} / \mathrm{F}]$ Let $f_{n}(x)=\frac{x^{2}+n x}{n} .\left(f_{n}\right)$ converges pointwise to $f(x)=x$.
8. $[\mathrm{T} / \mathrm{F}]$ Let $f_{n}(x)=\frac{x^{2}+n x}{n} .\left(f_{n}\right)$ converges uniformly to $f(x)=x$ on \mathbb{R}.
9. $[\mathrm{T} / \mathrm{F}]$ Let $f_{n}(x)=\frac{x^{2}+n x}{n} .\left(f_{n}\right)$ converges uniformly to $f(x)=x$ on $[-2,2]$.
10. $[\mathrm{T} / \mathrm{F}]$ Let $g_{n}(x)$ and $g(x)$ be differentiable functions on an compact interval I. Suppose g_{n} converges uniformly to g on I. Then, $\lim g_{n}^{\prime}(x)=g^{\prime}(x)$ on I.
11. $[\mathrm{T} / \mathrm{F}]$ Let $g_{n}(x)$ and $g(x)$ be differentiable functions on an compact interval I. Suppose g_{n} converges pointwise to g on I, and g_{n}^{\prime} converges uniformly to a function f on I. Then, $g^{\prime}(x)=f(x)$ on I.
12. $[\mathrm{T} / \mathrm{F}] f_{n}(x)=\frac{1}{1+(n x-1)^{2}}$ converges uniformly on $[0,1]$.
13. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ is uniformly convergent on \mathbb{R}.
14. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\sin n x}{n!}$ is uniformly convergent on \mathbb{R}.
15. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} x^{n} \sin n x$ is uniformly convergent on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
16. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\cos n x}{n \sqrt{n+1}}$ is a continuous function on \mathbb{R}.
17. Find an interval such that $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n 2^{n}}$ is a continuous function on that interval.
