Math 400: Discussion Questions # 8

A statement listed with [T/F] is a True/False statement that requires a proof or a counterexample, as appropriate.

- 1. [T/F] If f(x) = 3x 2, then $\lim_{x \to 4} f(x) = 20$.
- 2. [T/F] $\lim_{x\to 0} \sin(\frac{1}{x})$ exists.
- 3. Complete the ϵ - δ proof that $f : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$ given by $f(x) = \sqrt{x}$ is continuous.
- 4. [T/F] The function $f(x) = \sqrt{x^2 + 3}$ is continuous.
- 5. Give an ϵ - δ proof that sin x is a continuous function.
- 6. [T/F] The function $f(x) = \sin(\frac{1}{x})$ is continuous on (0, 1).
- 7. Assuming $\sin x$ is a continuous function (as proved above), show that $[\sin^2 x + \cos^6 x]^{\pi}$ is continuous everywhere.
- 8. Assuming $\sin x$ is a continuous function (as proved above), show that $\cos x$ is continuous everywhere. What about $\tan x$?
- 9. When is the function $\tan x$ continuous?
- 10. Give an ϵ - δ proof that $f(x) = \int_0^\pi \frac{\sin(xt)}{t} dt$ is a continuous function.
- 11. For each $n \in \mathbb{N}$, define the function $p_n : [0,1] \to \mathbb{R}$ as $p_n(x) = x^n$.
 - (a) $[T/F] p_n$ is continuous on [0, 1].
 - (b) [T/F] Define the sequence (a_n) as $a_n = p_n(1)$. Then $\lim a_n = 1$.
 - (c) [T/F] Fix $c \in [0, 1)$. Define the sequence (a_n^c) as $a_n^c = p_n(c)$. Then $\lim a_n^c = 0$.
 - (d) [T/F] Define the function $p: [0,1] \to \mathbb{R}$ as $p(x) = \lim_{n \to \infty} p_n(x)$. Then p is continuous on [0,1].
- 12. [T/F] There exists a function $f: (0,1) \to \mathbb{R}$ which is discontinuous at all points in (0,1).
- 13. [T/F] If A is open then f(A) is open.
- 14. [T/F] If A is closed then f(A) is closed.
- 15. Let $f(x) = x^2$. Then, what is $f(\mathbb{R})$? What is f((-1,1))? What is f((-1,1))? What is f((-1,1))?
- 16. Let $f(x) = \cos x$.
 - (a) [T/F] There is an interval of the form (a, b) such that f((a, b)) is compact.
 - (b) [T/F] There is an interval of the form $[a, \infty)$ such that $f([a, \infty))$ is compact.

- 17. [T/F] Let $f(x) = x^2$. Then f achieves its minimum in the interval (-2, 2).
- 18. [T/F] Let $f(x) = x^2$. Then f achieves its maximum in the interval (-2, 2).
- 19. $[T/F] f(x) = x^3 + 3x^2 1$ has exactly one root in each of the intervals [0, 1], [-1, 0], [-1, -2].
- 20. Given an $\epsilon > 0$, how many steps of the bisection procedure will be needed to find an approximate value of the root in [a, b] with error of at most ϵ .
- 21. Write a poem (or find a song) about continuous functions.