Math 400: Discussion Questions \# 9

A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. $[\mathrm{T} / \mathrm{F}]$ Fix $a, b \in \mathbb{R} . f(x)=a x+b$ is uniformly continuous on \mathbb{R}.
2. $[\mathrm{T} / \mathrm{F}]$ Fix $a \in \mathbb{R} . f(x)=x^{2}$ is uniformly continuous on $[0, a]$.
3. $[\mathrm{T} / \mathrm{F}] f(x)=x^{2}$ is uniformly continuous on \mathbb{R}^{+}.
4. $[\mathrm{T} / \mathrm{F}] f(x)=\sin x$ is uniformly continuous on \mathbb{R}.
5. $[\mathrm{T} / \mathrm{F}] f(x)=\cos \frac{1}{x}$ is uniformly continuous on $(0,1)$.
6. $[\mathrm{T} / \mathrm{F}] f(x)=x^{17} \sin x-e^{x} \cos 3 x$ is uniformly continuous on $[0, \pi]$.
7. $[\mathrm{T} / \mathrm{F}] f(x)=x^{2} \sin \frac{1}{x}$ is uniformly continuous on $(0,1]$
8. $[\mathrm{T} / \mathrm{F}] f(x)=\frac{1}{x}$ is uniformly continuous on $\left(\frac{1}{2}, \infty\right)$.
9. $[\mathrm{T} / \mathrm{F}]$ If f is continuous at c then f is differentiable at c.
10. $[\mathrm{T} / \mathrm{F}]$ If f is differentiable at c then f is continuous at c.
11. $[\mathrm{T} / \mathrm{F}]$ If f is differentiable at c then f^{\prime} is continuous at c.
12. $[\mathrm{T} / \mathrm{F}]$ The following is an acceptable proof for the Chain rule:
$(g \circ f)^{\prime}(c)=\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{x-c}=\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{x-c} \frac{f(x)-f(c)}{f(x)-f(c)}=\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{f(x)-f(c)} \frac{f(x)-f(c)}{x-c}=$ $\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{f(x)-f(c)} \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=g\left(f^{\prime}(c)\right) f^{\prime}(c)$.
13. What is the derivative of $f(x)=|x|$ on \mathbb{R} ?
14. Let $f(x)=x|x|$. Does $f^{\prime}(0)$ exist?
15. Let $v(x)$ be differentiable at c and $v(c) \neq 0$. Derive a rule (directly) for the derivative of $1 / v(x)$ at c.
16. Prove the Quotient rule for differentiation using the Product rule.
17. Let f be differentiable on (a, b). How can we find the max and min values of f on (a, b) ? How can we find the max and min values of f on $[a, b]$?
18. Let f be differentiable, that is f^{\prime} exists. Is f^{\prime} differentiable? Is f^{\prime} continuous? Does f^{\prime} have the Intermediate Value Property?
