A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$ is uniformly convergent on \mathbb{R}.
2. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\sin n x}{n!}$ is uniformly convergent on \mathbb{R}.
3. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} x^{n} \sin n x$ is uniformly convergent on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
4. $[\mathrm{T} / \mathrm{F}] \sum_{n=1}^{\infty} \frac{\cos n x}{n \sqrt{n+1}}$ is a continuous function on \mathbb{R}.
5. Find an interval such that $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n 2^{n}}$ is a continuous function on that interval.
6. $[\mathrm{T} / \mathrm{F}] \frac{1}{1-x^{3}}=1+x^{3}+x^{6}+x^{9}+\ldots$, for all $x \in(-1,1)$.
7. $[\mathrm{T} / \mathrm{F}] \frac{3 x^{2}}{\left(1-x^{3}\right)^{2}}=3 x^{2}+6 x^{5}+9 x^{8}+\ldots$, for all $x \in(-1,1)$.
8. $[\mathrm{T} / \mathrm{F}] \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\ldots$, for all $x \in(-1,1)$.
9. $[\mathrm{T} / \mathrm{F}] \arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\ldots$, for all $x \in(-1,1)$.
10. $[\mathrm{T} / \mathrm{F}] \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots$, for all x.
11. $[\mathrm{T} / \mathrm{F}] \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots$, for all x.
12. $[\mathrm{T} / \mathrm{F}] e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$, for all x.
13. Let $i=\sqrt{-1}$. Show that $e^{i x}=\cos (x)+i \sin (x)$. Use this to conclude $e^{i \pi}+1=0$.
14. $[\mathrm{T} / \mathrm{F}]$ Every continuous function is integrable.
15. $[\mathrm{T} / \mathrm{F}]$ If there exists a partition P of $[a, b]$, such that $L(f, P)=U(f, P)$, then f is integrable over $[a, b]$.
16. Use the definition of Riemann integral to find the value of the integral of $f(x)=x^{2}$ over the interval $[0,1]$. (You might find the formula: $1^{1}+2^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$ useful.)
17. $[\mathrm{T} / \mathrm{F}]$ Dirichlet Function is integrable on $[0,1]$.
18. $[\mathrm{T} / \mathrm{F}]$ Let $f:[0,2] \rightarrow \mathbb{R}$ be defined as $f(x)=1$ at all points except 1 and 1.5 where it is 0 . Then, f is integrable on $[0,2]$.
19. Let f be a function defined on $[a, b]$. Suppose f has k points of discontinuities at $c_{1}<c_{2}<$ $\ldots<c_{k}$ in $[a, b]$. Define P_{ϵ}, the partition of $[a, b]$, that can be used to verify the integrability criterion for f on $[a, b]$.
Is there any other method we can use for showing f is integrable on $[a, b]$?
20. $[\mathrm{T} / \mathrm{F}]$ Let $f:[a, b] \rightarrow \mathbb{R}$ be defined as $f(x)$ equals 1 at rationals in $[a, b]$ and 0 at irrationals in $[a, b]$. Then f is integrable over $[a, b]$.
21. Give an example for: a sequence of integrable functions whose pointwise limit function is not integrable.
22. [HW?] Let $f:[0,1] \rightarrow \mathbb{R}$ be defined as $f(x)$ equals 0 at rationals in $[0,1]$ and x at irrationals in $[0,1]$. Show that f is not integrable on $[0,1]$.
