A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. Let $f:[0,2] \rightarrow \mathbb{R}$ be defined as $f(x)$ equals 0 when $x=\frac{1}{n}$ in $[0,2]$ and 1 when $x=\frac{1}{n}$ in $[0,2]$. Show that f is integrable on $[0,2]$.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be the membership function of the Cantor set \mathcal{C}, that is $f(x)=1$ of $x \in \mathcal{C}$ and 0 otherwise. Show that f is integrable.
3. Let f be integrable on $[a, b]$. Prove that $k f$ is also integrable on $[a, b]$ for any fixed real number k.
4. $[\mathrm{T} / \mathrm{F}]$ Assume f and g are integrable on $[a, b]$. Then, over $[a, b]$, integral of their average is the average of their integrals.
5. $[\mathrm{T} / \mathrm{F}] \int_{0}^{1} \frac{\cos x}{1+x^{2}} \leq \frac{\pi}{4}$.
6. Assume that " f integrable on $[a, b] \Longrightarrow f^{2}$ integrable on $[a, b]$ ". Using this show that " f, g integrable on $[a, b] \Longrightarrow f g$ integrable on $[a, b]$ "
7. Prove that " f integrable on $[a, b] \Longrightarrow f^{2}$ integrable on $[a, b]$ ".
8. $[\mathrm{T} / \mathrm{F}]$ Assuming f, g are integrable on $[a, b] . \int_{a}^{b} f g=\left(\int_{a}^{b} f\right)\left(\int_{a}^{b} g\right)$.
9. When can we interchange the order of integral and limit for a sequnce of functions, that is $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n} ?$
10. Give a proof of Integration by Parts using the Fundamental Theorem of Calculus.
11. Evaluate $\int_{0}^{\pi} x \cos x$.
12. Show that $\int_{a}^{b} h(x)-\int_{h(a)}^{h(b)} h^{-1}(u)=b h(b)-a h(a)$, where h is a 1-to-1 differentiable function on (a, b).
