Math 400: Discussion/ Review Questions \# 2 ${ }^{1}$

A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. Let $I_{n}=\left[a_{n}, b_{n}\right]$ such that I_{n} contains I_{n+1}, for each $n \in \mathbb{N}$.

Let $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Let $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$.
(a) Does $\sup A$ exist? Why?
(b) Does inf B exist? Why?
(c) Let $a=\sup A$. Does $a \in I_{n}$ for all n ?
(d) Let $b=\inf B$. Does $b \in I_{n}$ for all n ?
2. For every $n \in \mathbb{N}$, let $I_{n}=\left(0, \frac{1}{n}\right)$. Which of the following statements are true?
(a) $I_{1} \subset I_{2} \subset I_{3} \subset \ldots$
(b) $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$
(c) $\cup_{n=1}^{m} I_{n}$ is nonempty for every $m \in \mathbb{N}$.
(d) $\cap_{n=1}^{m} I_{n}$ is nonempty for every $m \in \mathbb{N}$.
(e) $\cup_{n=1}^{\infty} I_{n}$ is nonempty.
(f) $\cap_{n=1}^{\infty} I_{n}$ is nonempty.

Why does/ does not the Nested Interval Property apply here?
3. $[\mathrm{T} / \mathrm{F}]$ Given $0<a<b$ in \mathbb{R}, there exists $q \in \mathbb{Z}$ such that $a<\frac{5}{q}<b$.
4. $[\mathrm{T} / \mathrm{F}]$ Given $0<a<b$ in \mathbb{R}, there exists $p \in \mathbb{Z}$ such that $a<\frac{p}{5}<b$.
5. $[\mathrm{T} / \mathrm{F}]$ Given $0<a<b$ in \mathbb{R}, there exists $p, q \in \mathbb{Z}$ such that $a<\frac{p}{q}<b$.
6. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Show that $\inf A=0$.
7. $[\mathrm{T} / \mathrm{F}]$ Let $A=\{e, \pi, \sqrt{2}\}$. Then $P(A)=\{\{e\},\{\pi\},\{\sqrt{2}\},\{e, \pi\},\{e, \sqrt{2}\},\{\pi, \sqrt{2}\}\}$.
8. [T/F] If $A=\{1,2,3\}$ and $B=\left\{x \in \mathbb{R}:\left(x^{2}-1\right)\left(x^{2}-4\right)=0\right\}$, then $A \sim B$.
9. (a) $[\mathrm{T} / \mathrm{F}] A \sim A$ for every set A.
(b) $[\mathrm{T} / \mathrm{F}]$ If $A \sim B$ then $B \sim A$.
(c) $[\mathrm{T} / \mathrm{F}]$ If $A \sim B$ and $B \sim C$, then $A \sim C$.
10. Apply Cantor's Diagonalization Method to the set of rational numbers in the interval $(0,1)$. Why doesn't this show us that $\mathbb{Q} \cap(0,1)$ is countable?
11. Some real numbers have two different decimal expansions (e.g. 0.5 is the same as $0.49999 \ldots$...). Why doesn't this cause any difficulties with the application of Cantor's Diagonalization Method in our proof of uncountability of $(0,1)$?
12. Is the set of all functions from $\{0,1\}$ to \mathbb{N} countable or uncountable?

[^0]
[^0]: ${ }^{1}$ Thanks to Stephen Abbott and Annalisa Crannell

