Math 400: Discussion/ Review Questions \# 3

1. Complete the proof of uniqueness of limit as outlined in the lecture.
2. Show that the sequence $a_{n}=\left(\frac{n+1}{n}\right)$ converges to 1 .
(a) What value of N should we use?
(b) Fill in the rest of the details of the proof.
3. Show that the sequence $b_{n}=\left(5-\frac{1}{n^{2}}\right)$ converges to 5 .
(a) What value of N should we use?
(b) Fill in the rest of the details of the proof.
4. Consider the sequence $c_{n}=\frac{\sin \left(n^{2}\right)}{n^{2}}$.
(a) Evaluate the initial terms of this sequence. Are they getting closer to a particular value?
(b) Is there a limit of this sequence?
5. Write and explain the negation of the definition of convergence of sequence.
6. What is the long-term behavior of the sequence $d_{n}=\left(1-n^{2}\right)$?
7. $[\mathrm{T} / \mathrm{F}]$ Every convergent sequence is bounded.
8. $[\mathrm{T} / \mathrm{F}]$ Every bounded sequence is convergent.
9. Let $\left(a_{n}\right) \rightarrow a$.
(a) $[\mathrm{T} / \mathrm{F}]$ There exists N s.t. $a-1<a_{n}<a+1$ for all $n \geq N$.
(b) $[\mathrm{T} / \mathrm{F}] L \leq a_{n} \leq U$ for all n,
where $L=\min \left\{a_{1}, a_{2}, \ldots a_{N-1}, a-1\right\}$, and $U=\max \left\{a_{1}, a_{2}, \ldots a_{N-1}, a+1\right\}$.
10. $[\mathrm{T} / \mathrm{F}]$ If $\left(a_{n}+b_{n}\right) \rightarrow a+b$, then $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$.
11. $[\mathrm{T} / \mathrm{F}]$ If $\left(a_{n}\right) \rightarrow a$ and $a_{n} \geq 0$ for all n, then $a \geq 0$.
12. $[\mathrm{T} / \mathrm{F}]$ If $\left(a_{n}\right) \rightarrow a$ and $a_{n} \geq 0$ for all $n \geq N$, then $a \geq 0$.
13. [T/F] If $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, with $a_{n} \geq b_{n}$ for all n, then $a \geq b$.
14. [T/F] If $\left(a_{n}\right) \rightarrow a$ and $\left(b_{n}\right) \rightarrow b$, with $a_{n} \geq b_{n}$ for all $n \geq N$, then $a \geq b$.
