Math 400: Discussion/ Review Questions # 3

- 1. Complete the proof of uniqueness of limit as outlined in the lecture.
- 2. Show that the sequence $a_n = \left(\frac{n+1}{n}\right)$ converges to 1.
 - (a) What value of N should we use?
 - (b) Fill in the rest of the details of the proof.
- 3. Show that the sequence $b_n = (5 \frac{1}{n^2})$ converges to 5.
 - (a) What value of N should we use?
 - (b) Fill in the rest of the details of the proof.
- 4. Consider the sequence $c_n = \frac{\sin(n^2)}{n^2}$.
 - (a) Evaluate the initial terms of this sequence. Are they getting closer to a particular value?
 - (b) Is there a limit of this sequence?
- 5. Write and explain the negation of the definition of convergence of sequence.
- 6. What is the long-term behavior of the sequence $d_n = (1 n^2)$?
- 7. [T/F] Every convergent sequence is bounded.
- 8. [T/F] Every bounded sequence is convergent.
- 9. Let $(a_n) \to a$.
 - (a) [T/F] There exists N s.t. $a 1 < a_n < a + 1$ for all $n \ge N$. (b) [T/F] $L \le a_n \le U$ for all n, where $L = \min\{a_1, a_2, \dots a_{N-1}, a - 1\}$, and $U = \max\{a_1, a_2, \dots a_{N-1}, a + 1\}$.
- 10. [T/F] If $(a_n + b_n) \to a + b$, then $(a_n) \to a$ and $(b_n) \to b$.
- 11. [T/F] If $(a_n) \to a$ and $a_n \ge 0$ for all n, then $a \ge 0$.
- 12. [T/F] If $(a_n) \to a$ and $a_n \ge 0$ for all $n \ge N$, then $a \ge 0$.
- 13. [T/F] If $(a_n) \to a$ and $(b_n) \to b$, with $a_n \ge b_n$ for all n, then $a \ge b$.
- 14. [T/F] If $(a_n) \to a$ and $(b_n) \to b$, with $a_n \ge b_n$ for all $n \ge N$, then $a \ge b$.