Math 400: Discussion/ Review Questions # 5

A statement listed with [T/F] is a True/False statement that requires a proof or a counterexample, as appropriate.

- 1. [T/F] If, for every $\epsilon > 0$ there exists N s.t. $|a_{n+1} a_n| < \epsilon$ for all $n \ge N$, then (a_n) is a Cauchy sequence.
- 2. [T/F] If a sequence (a_n) with each term in \mathbb{N} converges to an element of \mathbb{N} , then (a_n) is a Cauchy sequence.
- 3. [T/F] If a sequence (a_n) with each term in \mathbb{N} is a Cauchy sequence, then (a_n) converges to an element of \mathbb{N} .
- 4. [T/F] If a sequence (a_n) with each term in \mathbb{Q} converges to an element of \mathbb{Q} , then (a_n) is a Cauchy sequence.
- 5. [T/F] If a sequence (a_n) with each term in \mathbb{Q} is a Cauchy sequence, then (a_n) converges to an element of \mathbb{Q} .
- 6. [T/F] Every Cauchy sequence is bounded.
- 7. [T/F] Every bounded sequence is Cauchy.
- 8. [T/F] Every Cauchy sequence is monotone.
- 9. [T/F] Every monotone sequence is Cauchy.
- 10. Complete the proof of " (a_n) convergent implies (a_n) Cauchy".
- 11. [T/F] A sequence is Cauchy (in \mathbb{R}) if and only if it is convergent (in \mathbb{R}).
- 12. [T/F] If a sequence (a_n) is Cauchy, then the series $\sum a_n$ converges.
- 13. [T/F] If a series $\sum a_n$ converges, then the sequence (a_n) is Cauchy.
- 14. [T/F] There exists a convergent series $\sum a_n$ with $\lim a_n \neq 0$.
- 15. Give reasons for each of the four steps in the proof of "Algebra of Series Limits"
- 16. [T/F] If a series $\sum a_n$ converges, then the series $\sum |a_n|$ converges.
- 17. [T/F] If a series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.
- 18. [T/F] There exists a series that is absolutely convergent but not convergent.
- 19. [T/F] There exists a series that is convergent but not absolutely convergent.
- 20. [T/F] There exists a series that are both convergent and absolutely convergent.
- 21. [T/F] If $\sum a_n = A$ and $\sum b_n = B$, then $\sum a_n b_n = AB$.