Math 400: Discussion Questions/ Review # 6

A statement listed with [T/F] is a True/False statement that requires a proof or a counterexample, as appropriate.

- 1. Review for Cantor Set:
 - (a) How many intervals are in the stage 5 of the Cantor set? What is the length of each of those intervals?
 - (b) What is the length of the Cantor set? Justification?
 - (c) What is the cardinality of the Cantor set? Justification?
 - (d) What is the dimension of the Cantor set? Justification?
 - (e) What is the definition of Sierpinski set? the definition of Menger cube?
- 2. Is the empty set open? Is \mathbb{R} open?
- 3. Is $\mathbb{R} \setminus \{5\}$ open?
- 4. Is {5} open?
- 5. Is \mathbb{Q} open?
- 6. Is the interval (2,5) open?
- 7. Is the interval [2, 5] open?
- 8. Is the interval (2,5] open?
- 9. Is the interval (a, ∞) open?
- 10. Is the interval $(-\infty, b)$ open?
- 11. [T/F] Union of countably many open sets is an open set.
- 12. [T/F] Union of uncountably many open sets is an open set.
- 13. [T/F] Intersection of finitely many open sets is an open set.
- 14. [T/F] Intersection of countably many open sets is an open set.
- 15. Is the empty set closed? Is \mathbb{R} closed?
- 16. Is $\mathbb{R} \setminus \{5\}$ closed?
- 17. Is {5} closed?
- 18. Is \mathbb{Q} closed?
- 19. Is the interval (2,5) closed?
- 20. Is the interval [2, 5] closed?
- 21. Is the interval (2,5] closed?

- 22. Is the interval (a, ∞) closed?
- 23. Is the interval $(-\infty, b)$ closed?
- 24. Give an example of a set that both open and closed.
- 25. Give an example of a set that neither open nor closed.
- 26. [T/F] Union of finitely many closed sets is a closed set.
- 27. [T/F] Union of countably many closed sets is a closed set.
- 28. [T/F] Intersection of countably many closed sets is a closed set.
- 29. [T/F] Intersection of uncountably many closed sets is a closed set.
- 30. [T/F] If a is a limit point of A, then $a \in A$.
- 31. [T/F] a is a limit point of A iff there is a sequence $(a_n) \subset A$ with $a_n \to a$.
- 32. [T/F] If a set is closed then it contains all its limit points.
- 33. [T/F] If a set contains all its limit points then its closed.
- 34. [T/F] There exists an open set that contains all its limit points.
- 35. [T/F] If a set contains all its limit points then its not open.
- 36. What is the closure of $\{5\}$?
- 37. What is the closure of $\{5,6\}$?
- 38. What is the closure of (2,4)?
- 39. What is the closure of (3, 5]?
- 40. What is the closure of \mathbb{Q} ?
- 41. What is the closure of \mathbb{R} ?
- 42. [T/F] $A \subseteq \overline{A}$.
- 43. $[T/F] \overline{A} \subseteq A$.
- 44. [T/F] Closure $(\overline{A}) = \overline{A}$.