Math 400: Discussion Questions/ Review \#8

A statement listed with $[\mathrm{T} / \mathrm{F}]$ is a True/False statement that requires a proof or a counterexample, as appropriate.

1. $[\mathrm{T} / \mathrm{F}]$ If $f(x)=3 x-2$, then $\lim _{x \rightarrow 4} f(x)=20$.
2. $[\mathrm{T} / \mathrm{F}] \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ exists.
3. Complete the $\epsilon-\delta$ proof that $f: \mathbb{R}^{+} \cup\{0\} \rightarrow \mathbb{R}$ given by $f(x)=\sqrt{x}$ is continuous.
4. $[\mathrm{T} / \mathrm{F}]$ The function $f(x)=\sqrt{x^{2}+3}$ is continuous.
5. Give an $\epsilon-\delta$ proof that $\sin x$ is a continuous function.
6. $[\mathrm{T} / \mathrm{F}]$ The function $f(x)=\sin \left(\frac{1}{x}\right)$ is continuous on $(0,1)$.
7. Assuming $\sin x$ is a continuous function (as proved above), show that $\left[\sin ^{2} x+\cos ^{6} x\right]^{\pi}$ is continuous everywhere.
8. Assuming $\sin x$ is a continuous function (as proved above), show that $\cos x$ is continuous everywhere. What about $\tan x$?
9. When is the function $\tan x$ continuous?
10. Give an $\epsilon-\delta$ proof that $f(x)=\int_{0}^{\pi} \frac{\sin (x t)}{t} d t$ is a continuous function.
11. For each $n \in \mathbb{N}$, define the function $p_{n}:[0,1] \rightarrow \mathbb{R}$ as $p_{n}(x)=x^{n}$.
(a) $[\mathrm{T} / \mathrm{F}] p_{n}$ is continuous on $[0,1]$.
(b) $[\mathrm{T} / \mathrm{F}]$ Define the sequence $\left(a_{n}\right)$ as $a_{n}=p_{n}(1)$. Then $\lim a_{n}=1$.
(c) $[\mathrm{T} / \mathrm{F}]$ Fix $c \in[0,1)$. Define the sequence $\left(a_{n}^{c}\right)$ as $a_{n}^{c}=p_{n}(c)$. Then $\lim a_{n}^{c}=0$.
(d) $[\mathrm{T} / \mathrm{F}]$ Define the function $p:[0,1] \rightarrow \mathbb{R}$ as $p(x)=\lim _{n \rightarrow \infty} p_{n}(x)$. Then p is continuous on $[0,1]$.
12. $[\mathrm{T} / \mathrm{F}]$ There exists a function $f:(0,1) \rightarrow \mathbb{R}$ which is discontinuous at all points in $(0,1)$.
13. $[\mathrm{T} / \mathrm{F}]$ If A is open then $f(A)$ is open.
14. [T/F] If A is closed then $f(A)$ is closed.
15. Let $f(x)=x^{2}$. Then, what is $f(\mathbb{R})$? What is $f((-1,1))$? What is $f([-1,1))$? What is $f([-1,1])$?
16. Let $f(x)=\cos x$.
(a) $[\mathrm{T} / \mathrm{F}]$ There is an interval of the form (a, b) such that $f((a, b))$ is compact.
(b) $[\mathrm{T} / \mathrm{F}]$ There is an interval of the form $[a, \infty)$ such that $f([a, \infty))$ is compact.
17. $[\mathrm{T} / \mathrm{F}]$ Let $f(x)=x^{2}$. Then f achieves its minimum in the interval $(-2,2)$.
18. $[\mathrm{T} / \mathrm{F}]$ Let $f(x)=x^{2}$. Then f achieves its maximum in the interval $(-2,2)$.
19. $[\mathrm{T} / \mathrm{F}] f(x)=x^{3}+3 x^{2}-1$ has exactly one root in each of the intervals $[0,1],[-1,0],[-1,-2]$.
20. Given an $\epsilon>0$, how many steps of the bisection procedure will be needed to find an approximate value of the root in $[a, b]$ with error of at most ϵ.
21. Write a poem (or find a song) about continuous functions.
