Assignment for Thursday 2/1

I. Exercises from the book:

Section 3.1 → 3cd, 4, 6bc, 9, 11, 16, 17

II. Supplementary Exercises:

11. Prove that if \(2^n - 1 \) is prime then \(n \) is prime.
 (Hint: Prove the contrapositive.)
 [Compare this to 11b above]

12. Let \(F_n = 2^{2^n} + 1 \), \(n \geq 0 \) (These are called Fermat Numbers).
 Show that \(\gcd(F_m, F_n) = 1 \), for \(m > n \geq 0 \).

III. Optional Exercises:

4. Prove that in any set of 33 distinct integers with prime factors amongst \(5, 7, 11, 13, 23 \),
 there must be two whose product is a square.

5. Prove that there is exactly one natural number \(n \) for which \(2^8 + 2^n + 2^m \) is a perfect square.