MATH 554 : Homework #3

Attempt at least four of the following five problems. Fifth problem will be counted as a bonus problem. Problem 1 is compulsory.
Due Monday, February 28th.

All problems require explicit and detailed proofs. Solutions should be written clearly, legibly, and concisely, and will be graded for both mathematical correctness and presentation. Points will be deducted for sloppiness, incoherent or insufficient explanation, or for lack of supporting rationale.

Always remember that homework is NOT meant to be an examination, it is meant to assist in your learning and development. If you need help with it, don’t hesitate to ask. You can contact me during office hours, or through email.

1. In the binomial random model, show that \(t(n) = \frac{\log n}{n} \) is a threshold function for the disappearance of isolated vertices.
 (Hint: The following fact might be useful: if np^2 \to 0 \text{ as } n \to \infty, \text{ then } (1 - p)^n \sim e^{-np}. \text{ Also, it is easier to work with } t(n) = e^{\frac{\log n}{n}}, \text{ and set } c > 1 \text{ for one part of the threshold calculation and } c < 1 \text{ for the other part.})

2. A random labeled tournament is generated by orienting each edge \(v_i v_j \) \((i < j)\) as \(v_i \to v_j \) or \(v_i \leftarrow v_j \) independently with probability 1/2.

 (a) In a tournament, a king is a vertex such that every other vertex can be reached from it by a path of length at most 2. It is known that every tournament contains a king. Is it true that in almost every tournament every vertex is a king?

 (b) Prove that almost every tournament is strongly connected.

3. Let \(Q_k \) be the following graph property: for every choice of disjoint vertex sets \(S, T \) of size \(k \), there is an edge with endpoints in \(S \) and \(T \). For \(k = c \log_2 n \), prove that almost every graph from the binomial random graph space \(G(n, 1/2) \) has property \(Q_k \) if \(c > 2 \).

4. Prove that the length of the longest constant run in a list of \(n \) random heads and tails (of a fair coin) is \((1 + o(1)) \log_2 n\). In other words, for \(k = (1 + \varepsilon) \log_2 n \), almost no list has \(k \) consecutive identical flips if \(\varepsilon > 0 \), and almost every list has \(k \) consecutive identical flips if \(\varepsilon < 0 \).

5. Prove that if \(k = \log_2 n - (2 + \varepsilon) \log_2 \log_2 n \), then almost every \(n \)-vertex tournament has the property that every set of \(k \) vertices has a common successor.