Handout for sections 9.1, 9.2, & 9.3

1. Remember the relation between the solutions of
\[ax^2 + bx + c \equiv 0 \pmod{p} \land y^2 \equiv d \pmod{p}, \]
where \(y = 2ax + b \land d = b^2 - 4ac \)

2. Does \(x^2 \equiv 7 \pmod{31} \) have a solution?
 i.e., is 7 a quadratic residue \(\pmod{31} \)?
 \(7^2 \equiv 49 \equiv 18 \pmod{31}, \quad 7^4 \equiv 18^2 \equiv 324 \equiv 14 \pmod{31}, \)
 \(7^8 \equiv 14^2 \equiv 196 \equiv 10 \pmod{31}, \quad 7^{16} \equiv 10^2 \equiv 100 \equiv 7 \pmod{31} \)
 Since, 7 and 31 are coprime, we get \(7^{15} \equiv 1 \pmod{31} \).
 So, a solution exists. Since \((7^8)^2 \equiv 7 \pmod{31} \), \(x \equiv 7^8 \) is a solution.
 \(7^8 \equiv 10 \pmod{31} \), \(6 \cdot 10 \equiv 10 \pmod{31} \) is a solution.
 The second solution is \(x \equiv 21 \pmod{31} \) (\(21 = 31 - 10 \)).

3. Does \(x^2 \equiv 85 \pmod{97} \) have a solution? i.e., find \((85/97) \).
 \((85/97) = (-12/97) = (-1/97) \cdot (4/97) \cdot (3/97) \)
 Since \(85 \equiv -12 \pmod{97} \) by multiplicativity \(= (-1/97) \cdot (3/97) = 1 \)
 \(-1/97 \equiv (-1)^{48} = 1 \)
 \(3/97 \equiv (97/3) = (1/3) = 1 \)
 By QL, \(\frac{97}{3} \equiv 1 \pmod{3} \)
 So, a solution exists.

4. Solve \(3x^2 + 9x + 7 \equiv 0 \pmod{13} \)
 This is the same as \(y^2 \equiv 10 \pmod{13} \) where \(y \equiv 6x + 9 \pmod{13} \)
 Clearly, \(y \equiv \pm 6 \pmod{13} \) is one of the solutions.
 So, \(6x + 9 \equiv 6 \pmod{13} \) & \(6x + 9 \equiv -6 \pmod{13} \) give the solutions for \(x \).
 \(6x \equiv -3 \pmod{13} \) gives \(x \equiv 6 \pmod{13} \), by EA or Bland.
 \(6x \equiv -15 \pmod{13} \) gives \(x \equiv 4 \pmod{13} \), by __________

5. \((19/23) = (-4/23) = (4/23)(-1/23) = 1 \cdot (-1) = -1 \)
 \((-23/59) = (36/59) = (6^2/59) = 1 \)
4. Find \((7/13)\) using Gauss Lemma.

\[13^{-1} = 6 \text{ so, } S = \{7, 14, 21, 28, 35, 42\}\]

Modulo 13, \(7 \equiv 7, 14 \equiv 1, 21 \equiv 8, 28 \equiv 2, 35 \equiv 9, 42 \equiv 3\).

Out of which \(7, 8, \text{ and } 9\) are larger than 6.5

\[\therefore (7/13) = (-1)^3 = -1\]

\[= (-1)(1)(382/73)\]

You should be able to justify all the steps.

\[=-(18/73) = -(9/73)(2/73) = -(1)(+1)\]

\[= -1\]