
What is this course really about?

Linear program is a kind of constrained optimization problem. A constrained optimization
problem asks you to maximize or minimize a (objective) function of several variables when the
variables have to satisfy certain (in)equalities (constraints). You have encountered constrained
optimization problems in Multivariable Calculus when you studied the method of Lagrange
Multipliers. Problems in linear optimization are both simpler and more complicated than such
problems you have seen before. They are simpler because the objective function and the con-
straints all have to be linear. But they are complicated because they have lots of variables and
many times have other constraints (like integrality) which make them computationally difficult.
The assumption about linearity makes Linear Algebra (instead of calculus) the primary tool to
tackle such problems. In fact, a general LP asks for a vector x that minimizes the dot product
c.x subject to Ax ≤ b.

Each inequality specifies points on one side of a hyperplane (a half-space) in Rn, where n is
the number of variables. The intersection of all these half-spaces gives a convex, n-dimensional
polytope (the feasible set). Linearity of LP guarantees that the optimal solution occurs at a
corner (vertex) of the polytope. So in principle, to solve an LP, all we have to do is find all
vertices of this polytope and evaluate the objective function on each of these points and picking
the smallest.

However, this is not a practical algorithm because the number of vertices can be large. For
example, the following n constraints in n variables: 0 ≤ xi ≤ 1, give [0, 1]n, the n-dimensional
hypercube as the polytope. And this hypercube has 2n vertices. So it would take exponential
number of steps to evaluate the objective function at all these possible solutions.

The simplex algorithm avoids this hassle by using the fact that if the objective function is
not minimized at a particular vertex of the polytope then one of the neighboring vertices of the
polytope will have a smaller objective function value. So, starting at a vertex we can take these
“local” steps improving our objective function value and ultimately reach the optimal solution.

This is just the start of the story. Next obvious questions are: How do we pick a vertex to
start our algorithm? How do we choose one of the neighboring vertices for the next step? Can
we guarantee this will not take exponential number of steps? Can we easily check whether a
particular solution is optimal or not? How can we solve very large LPs efficiently? How does
the solution of the LP change if we change the objective function or the constraints by a small
“amount”? How can we solve LPs that arise from Networks (like the Transportation problem)?
How can we solve LPs that have the additional constraint that some of the variables must take
integral value (Integer Programming)?

In this course, we will build a mathematical foundation through an interplay of geometry
and linear algebra, that will allow us to understand all the underlying concepts of LPs stated
above, and then explore the followup questions mentioned above. This will prepare you to apply
these mathematical tools in non-trivial applications. In fact, Linear optimization techniques,
including simplex method, are widely used in real-life applications for decision-making in logis-
tics and supply chains for businesses in transportation and distribution industries (like airlines,
retailers, grocery chains, etc.). Problems involving tens of thousand of variables and millions
of constraints are solved regularly. As discussed below, such non-trivial applications of math-
ematics (like Linear Optimization techniques) requires a deep understanding of the underlying
mathematical structures and concepts.

According to Underwood Dudley, there are at least eight levels of mathematical understanding:



1. Being able to do arithmetic

2. Being able to substitute numbers in ‘formulas’/ being able to state or use elementary
properties of concepts

3. Given ‘formulas’/ elementary properties of a concept, being able to get other ‘formulas’/
elementary properties

4. Being able to understand hypotheses and conclusions of theorems

5. Being able to understand the proofs of theorems, step by step

6. Being able to really understand proofs of theorems: that is, seeing why the proof is as it
is, and comprehending the underlying ideas of the proof and its relation to other proofs
and theorems

7. Being able to generalize and extend theorems

8. Being able to see new relationships, and discover and prove entirely new theorems.

The word ‘theorem’ is used above in a very general sense - it can also represent algorithms and
techniques with a mathematical basis.

Levels 5 and 6 would be considered basic mathematical ability for Math majors. Non-trivial
applications of Mathematics would lie in-between levels 6 and 7. While levels 7 and 8 constitute
research in Mathematics. A lot of computer science, engineering, and physics is deep applied
mathematics and requires understanding at or beyond levels 6 and 7.

Calculus courses focus on a mixture of 1 and 2. Math 230 (Introduction to Discrete Mathematics)
focuses on 3 and 4. Math 332 (Elementary Linear Algebra) focuses on 3 and 4 with a bit of
5. In this course (Math 435/ 535), the focus is more on the upper part of levels 3, 4, 5, and
6, and the corresponding algorithms that arise out of this mathematical understanding. The
aim is give you a firm foundation in levels up to 6, so that you can go onto levels 7 and 8,
both as mathematicians and engineers (through non-trivial applications of Linear Optimization
techniques).

I hope this course will help you make progress through these levels of mathematical under-
standing, and mathematical maturity. I would consider this a successful course, if you gain
confidence in your ability to read, understand, and write mathematical arguments (including
proofs), especially as compared to the beginning of the semester. And, you feel that you can
read, understand, and apply any other topic/ technique in Linear Optimization that you might
need later on in your career.

with best wishes,
Hemanshu Kaul


