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Although combinatorial problems have arisen in all fields of mathematics throughout history,
discrete mathematics has only come to prominence as a mathematical discipline over the past cen-
tury. It has been beneficial to adapt techniques from more mature areas of mathematics to tackle
various combinatorial problems. A fruitful area of collaboration has been with probability. ‘The
probabilistic method’ is now a well established part of the graduate curriculum in combinatorics.

Over the past two decades additional techniques with a probabilistic flavor have been devel-
oped for applications to combinatorial problems, both algorithmic and existential. A traditional
first course in probabilistic combinatorics gives only the briefest hint of these areas from proba-
bility and information theory, such as Concentration of Measure, Entropy, and Rapidly Mixing
Markov Chains. At UIUC, the courses on ‘Methods in Combinatorics’ and ‘Applied Probability’
do not teach these topics except for some large deviation inequalities. Moreover, the focus in
Probability courses tends to be on the abstract development of the theory, which can obscure
the applicability of these methods in discrete mathematics. This course will introduce graduate
students to these methods and provide applications in graph theory, combinatorics, combinato-
rial optimization, and theoretical computer science. This course should be of interest to graduate
students in Combinatorics, Probability, Operations Research, Theoretical Computer Science, and
ECE. The topics are discussed in more detail below.

Concentration of Measure. Inequalities for concentration of measure are vital tools
in probabilistic combinatorics, probabilistic analysis of algorithms, randomized algorithms, and
stochastic combinatorial optimization. They show that the probability of a random variable be-
ing far from its mean (or median) is exponentially small, and they give bounds on probabilities
of rare events. The topics include the following: introduction to concentration of measure in
metric spaces and its relation to isoperimetric inequalities, Chernoff–Hoeffding bounds for sums
of random variables and their generalizations, McDiarmid’s method of bounded differences for
Lipschitz bounded functions and its variants (leading to the Azuma–Hoeffding Martingale In-
equality), and isoperimetric inequalities under Hamming metric (leading to Talagrand’s convex
distance isoperimetric inequality and its variants). The focus is on developing the themes under-
lying the various methods and illustrating the final results through applications in graph theory,
combinatorial optimization and theoretical computer science. The main references, in addition
to the instructor’s lecture notes, include :

• N. Alon, J. Spencer, The Probabilistic Method, 2nd ed., (Academic Press 2000). (esp. Chapter 7)
• M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed, Probabilistic Methods for Algorithmic

Discrete Mathematics, (Springer, 1998). (esp. McDiarmid, Concentration, 195–248)
• S. Janson, On concentration of probability, In Contemporary Combinatorics, ed. B. Bollobas, Bolyai

Society Mathematical Studies 10 (2002), 289–301.
• C. McDiarmid, On the method of bounded differences, In Surveys in Combinatorics, LMS lecture

note series 141 (1989), 148–188.
• J.M. Steele, Probability theory and Combinatorial Optimization, (SIAM, 1997).
• M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ.

Math. IHES 81 (1995), 73–205.
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Entropy. Entropy of a random variable measures the amount of uncertainty in the random
variable or the amount of information obtained when the random variable is revealed. In the last
decade, entropy has been applied to provide short and elegant proofs for various counting and
covering problems in graphs and set systems. After introducing the elementary properties of the
entropy function and Shearer’s Entropy Lemma, the focus will be on combinatorial applications
giving bounds on various extremal problems. Examples include Brégman’s bound on the perma-
nent of a 0, 1-matrix, bounds on the size of an intersecting family of graphs and on the number of
copies of a fixed subgraph, Dedekind’s problem on the number of monotone Boolean functions,
and covering a complete r-uniform hypergraph with a small number of r-partite hypergraphs. We
will also consider Friedgut’s generalization of Shearer’s Lemma, leading to a common generaliza-
tion of classical inequalities such as those of Cauchy-Schwarz, Hölder, etc. The main references,
in addition to the instructor’s lecture notes, include :

• I. Csiszár, J. Körner, Information Theory, (Academic Press, 1981).
• E. Friedgut, Hypergraphs, entropy and inequalities, The American Mathematical Monthly 111

(2004), 749–760.
• E. Friedgut, J. Kahn, On the number of copies of one hypergraph in another, Israel Journal of

Mathematics 105 (1998), 251–256.
• D. Galvin, P. Tetali, On weighted graph homomorphisms, DIMACS-AMS Special Volume 63 (2004),

97–104.
• J. Radhakrishnan, Entropy and counting, In Computational Mathematics, Modelling and Algo-

rithms, ed. J.C. Mishra, (Narosa Publishers, New Delhi, 2003).
• G. Simonyi, Graph entropy - a survey, In Combinatorial Optimization, DIMACS Series Discrete

Math. Theoret. Comput. Sci. 20 (A.M.S., 1995), 399–441.

Rapidly Mixing Markov Chains. Over the past decade the Markov chain Monte Carlo
(MCMC) method has emerged as a powerful methodology for approximate counting, computing
multidimensional volumes and integrals, and combinatorial optimization. The MCMC method re-
duces these problems to sampling over an underlying set (of solutions or combinatorial structures)
w.r.t. a given distribution. This sampling is done by a Markov Chain, on the underlying set, that
converges to the required (stationary) distribution. The primary step in the rigorous analysis of
such an MCMC algorithm is to show that the Markov chain is rapidly mixing, i.e., it has a high
rate of convergence to its stationary distribution. This analysis tends to be an interesting mix of
probability and combinatorics. The topics will include the equivalence of (approximate) counting
and (almost) uniform sampling, the relation between Fully Polynomial Randomized Approxima-
tion Schemes (FPRAS) and rapid mixing of Markov Chains, and the study of various methods for
bounding the mixing rates of combinatorially defined Markov Chains. These methods, including
coupling, conductance, and canonical paths, will be used in applications of the MCMC method
to the Knapsack problem, proper colorings of a graph, linear extensions of a poset, permanent of
a 0, 1-matrix, etc. The main references, in addition to the instructor’s lecture notes, include :

• M. Jerrum, Mathematical foundations of the Markov chain Monte Carlo method, In Probabilistic
Methods for Algorithmic Discrete Mathematics, (Springer, 1998), 116–165.

• M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Lectures in Mathe-
matics (ETH Zurich, 2003).

• M. Jerrum, A. Sinclair, The Markov chain Monte Carlo method: an approach to approximate
counting and integration, In Approximation Algorithms for NP-hard Problems, ed. D Hochbaum,
(PWS 1996), 482–520.

• L. Lovász, Random walks on graphs: a survey, In Combinatorics, Paul Erdős is Eighty Vol. 2, ed.
D. Miklós, V. T. Sós, T. Szönyi, (Bolyai Society, 1996), 353–398.
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