Math 380 – Introduction to Mathematical Modeling

Course Description from Bulletin: This course provides an introduction to problemdriven (as opposed to method-driven) applications of mathematics with a focus on design and analysis of models using tools from all parts of mathematics. (3-0-3) (C)

Enrollment: Required for AM and Elective for other majors.

Textbook(s): Giordano, Fox, Horton, *A First Course in Mathematical Modeling, 5th edition*, Cengage, 2013.

Other required material: Usage of computational software like MatLab or Mathematica, etc. These are available through the university.

Prerequisites: CS 104, MATH 251, MATH 252 (concurrent), MATH 332

Objectives:

- 1. Students will develop an understanding of applied mathematics as a thought-process and a toolbox for the study of real-world phenomena from engineering, natural and social sciences.
- 2. Students will learn concepts and tools from different parts of mathematics continuous, discrete, and probabilistic as they are applied to build and refine models for various applications.
- 3. Students will study how to compare the modeling results to observations and how models can be improved.
- 4. Students will do a 8-10 week long project where they apply the modeling process to analyze an open ended real-life problem, with a deliverable of a project report and programming implementation.
- 5. Students will develop good habits for understanding, communicating, and writing mathematical knowledge through classroom participation, homework, and projects.

Lecture schedule: 3 50 minute (or 2 75 minute) lectures per week

Cours	e Outline:	Hours
1.	Discrete change in financial and biological population systems - Difference	ce
	equations and discrete dynamical systems, solutions and stability	5
2.	Physical models – Proportionality and geometric similarity	3
3.	Model fitting – Errors, Chebyshev criterion, least squares criterion, linear	
	regression, and data transformation	5
4.	4. Discrete optimization models – Linear optimization, geometric and algebraic	
	solutions, integer programs and combinatorial optimization,	
	binary decisions	3
5.	5. Network models - Graphs and networks, network flows, assignment proble	
	graph coloring, vertex covers, local search algorithms	5
6.	Discrete probabilistic models – Finite discrete time Markov chains and stationa	
	distribution, component and system reliability	2
7.	Simulation Modeling - Monte Carlo algorithms, random point generation,	
	queuing models	3

- 8. Population models Ordinary differential equations, equilibria, phase diagrams and solutions fields 4
- Competing species and predator-prey models Dynamical systems, Euler's method, solving linear dynamical systems
- 10. Continuous optimization models Multivariable optimization, gradient method, Lagrange multipliers, Newton's method 3
- 11. Special topics e.g., complex network models, game theoretic models 3

Assessment:	Homework	15-25%
	Semester Project	20-30%
	Mid-Term Exams	20-30%
	Final Exam	20-30%

Syllabus prepared by: Hemanshu Kaul and Gregory Fasshauer **Date**: 10/01/2014