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We all warn students about “Gambler’s Fallacy” when talking about probability and
coin flips, but it’s nice to see some real life examples in this BBC article at
http://www.bbc.com/worklife/article/20200217-the-simple-maths-error-that-can-lead-to-bankruptcy.
I particularly found it interesting that higher intelligence might make it more likely to fall
victim to this fallacy. I feel that people with a better feeling for mathematics are more
likely to confuse the two related notions of “probability” and “randomness”. People who
like numbers have a strong intuitive idea of randomness that can be misleading especially
when confused with probability.

Let me say a bit about what I mean by this. It’s mostly an excuse to tell students
about a beautiful mathematical idea that shows us how to understand “randomness”.

Suppose somebody gives you a few sequences of heads (H) and tails (T) flips of a fair
coin (total 30 flips in each sequence; think of 30 as being a very large number ;-)

(0) H H H H H H H H H H H H H H H H H H H H H H H H H H H H H

(1) H H H H H H H H H H H H H H H H T T T T T T T T T T T T T T

(2) H T H T H T H T H T H T H T H T H T H T H T H T H T H T H H

(3) H T H T T T H H T H H T H T H T H T T T H T H T H T H T H H H

(4) H T T H H H T T T T T T T H H H T H T H H H T H H H T H T H

We know that the probability of each of these sequences actually occurring is the same,
(1/2)30. And we know that the next outcome in each of these sequences of flips will be
H or T with equal probability. But if you have some intuition about numbers, you tend
to think that something is unnatural/ non-random about some of these sequences, and
you think that unnaturalness has an influence on the next outcome because your intuition
tells you that ultimately all such sequences have to look “random”. This would lead you
to erroneously conclude that the next coin flip in, say, sequence (0) is more likely to be
T than H in order to move towards “randomness”. (Of course, if this was true then you
can make money by betting on this outcome; more about that in the end).

But what does “randomness” really mean? How can we mathematically describe what
a “random” sequence of H and T looks like? If the sequences above were given to you as

http://www.bbc.com/worklife/article/20200217-the-simple-maths-error-that-can-lead-to-bankruptcy


“data” for a coin flipping experiment, which ones would you believe to be true/ unmanipu-
lated data? Solomonoff and Kolmogorov, independently, in 1960s gave a beautiful answer
to this question and laid the foundation of what’s called Information or Kolomogorov
complexity. Li and Vitanyi’s textbook ‘Introduction to Kolmogorov Complexity’ is a
good way to learn about it. Let me give you an intuitive idea about it.

Looking back at the sequences (0), (1), (2), I think most of us would agree that they
don’t look “random”. What about (3) and (4)? Its harder to decide for those.

First, let us try a purely probability or statistics based idea. Look at the pattern of
“runs” in each sequence. A run is a contiguous sequence of identical flips - a sequence
of uninterrupted repeated H or of uninterrupted repeated T. The current run ends and a
new run starts when H follows T or T follows H. Now count the number of runs in each
sequence.

In (0) there is exactly 1 run. In (1) there are exactly 2 runs. In (2) there are 29
runs. In (3) there are 23 runs. And in (4) there are 15 runs. We can prove that a
“random” sequence of 30 coin flips will on average have around 15 runs (students who
have taken probability should be able to prove the exact formula for this in terms of
number of flips; try it). This tells us (0), (1), (2), (3) are very unlikely to be random
sequences (real/unmanipulated data) as the number of runs are “too far” from 15. While
(4) doesn’t fail this test, so it could be truly random. “Close” or “far” in this sense can be
made precise, in fact this test is more precise the longer a sequence is. It’s more difficult
to see whether a short sequence is random. However, this test of runs is not enough to
characterize randomness. Consider this example of 30 coin flips:
(5) H T H T H T H T H T H T H T H H H H H H H H H H H H H H
It has exactly 15 runs like (4) but it seems obviously not random (“fake”).

So we need something more fundamental to distinguish something like (4) from (5).

Here’s a different way of recognizing what’s off about these examples: all of them have
‘short descriptions’, that is they are ‘compressible’.

For example (1) can be described as 16 H followed by 14 T. (2) as 14 HT followed by
2H. (5) as 7 HT followed by 16 H. From a programming perspective, these descriptions
can be thought of as programs that are much shorter than simply printing the whole
sequence of H and T one flip at a time. We say such sequences are compressible (have
a much shorter description then their full length). This difference becomes even more
startling when you think of examples that are much longer than 30 flips.

Lack of this compressibility means that there are no “patterns” in the truly random
sequence of flips data to describe it using memory much less than its length. The Kol-
mogorov complexity of a sequence of outcomes like our coin flips, is the size of the shortest



computer program needed to generate it. I am ignoring technicalities here (e.g. how to
give a precise definition of a computer program and the size of it) but this captures the
essence of this idea - so elegant and natural for anyone who has written algorithms or
programs. Random sequences don’t have any program much shorter than essentially just
writing it out step-by-step, one outcome at a time.

Solomonoff and Kolmogorov were able to prove that this property of ‘non-compressiblity’
is what characterizes ‘randomness’.

Let me conclude by going back to the initial discussion where I said that if we could
predict (with higher than 1/2 probability) that the next flip would be T then we could
make money betting on such an outcome. Say you were playing a simple betting game
of ”double or nothing” based on a sequence of coin flips. Before each coin flip, based on
previous coin flips that you have already seen, you bet a certain amount of your money,
from zero to everything, on H and remaining on T. You get the double of your bet amount
on the correct outcome and lose all of your bet amount on the incorrect outcome (this is
an example of Martingale, some of you might have studied Martingales in your courses).
Then, it has been proved that, a truly random sequence of coin flips can be characterized
as one where there is no strategy implementable on a computer for making money off this
betting game!!!

Another connection that many of you might appreciate is “Expected Kolmogorov
Complexity Equals Shannon Entropy”; so yes, Shannon Entropy which measures average
information content of the distribution of a random variable is related to Kolmogorov
complexity. And Entropy is a notion you might have come across as it is used widely in
mathematics and computer science.


