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On the occasion of π Day, I wanted to share with you something surprising I learned
about π within the last year, and hope that some of you find this new and unexpected
too. Here goes.

There are many methods for computing the digits of π. Classically, π was defined
geometrically (e.g. as area of a circle of unit radius, or as the circumference of circle of
unit diameter) and geometrical ideas were used to find an approximate value of π using
regular polygons to inscribe and circumscribe a circle. In modern times, Taylor series
formula for arctan along with Machin-type formulas* have been most commonly used for
efficiently finding more and more digits of π, reaching up to 1.2 trillion digits. Other
faster converging power series for π based on Ramanujan’s mystifying formulas for π �

have pushed the records to 50 trillion digits of π in January 2020!

But what about bad methods for computing π? Ones that take a lot of time and effort
to generate just a few digits of π.

The famous Buffon’s needle experiment says: If a needle of length D is dropped N
times on a surface on which parallel lines are drawn 2D units apart, and it comes to rest
crossing any line X of those times, then we may approximate π by N/X (this is based
on the fact that the probability of crossing a line in one instance of this experiment is
1/π; look it up). This sets up a Monte-Carlo algorithm for approximating π which is too
slow to use in practice. It has been estimated that we would need to drop a needle 10000
times before we could reliably estimate the first two digits of π. But remember we like
that. We are ambitious, so we ask “Can we do worse?” Something worse than dropping
a needle countless times!

In 2003, G. Galperin described a method for finding digits of π that might be un-
beatable under our perverse criterion. Imagine two solid cubes, let’s call them A and B,
resting on a frictionless surface with an immovable wall to their left. We push B to the left
towards A. Obviously a series of collisions are going to ensue. Assume no energy is lost
during these collisions. If A and B each weigh 1 kg, then how many collisions (including
those between A and B, and those with the wall) will there be in total? First, B strikes
A, transfers all its energy to A, which now moves towards the wall, strikes it, and moves
back towards B, finally striking B which moves off towards right, never to return. This
gives a total of 3 collisions. What if A is 1 kg and B is 100 kgs, how many collisions will

*see http://en.wikipedia.org/wiki/Machin-like_formula
�see http://en.wikipedia.org/wiki/Chudnovsky_algorithm
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we have in that scenario (always under these ideal conditions)? It turns out we will have
exactly 31 collisions. Hmmmm.... That’s interesting! Would 1kg vs 10000 kgs give us 314
collisions!?!?

Galperin showed that if A weighs 1 kg and B weighs 102m kgs then the number of
collisions will be the integer equal to the first m+ 1 digits of π.�

So, to calculate first 30 digits of π (a very modest aim), we need to record the collisions
between a body of mass 1 kg and a body of mass 1060 kgs. That’s greater than the mass of
the observable universe by several orders of magnitude! Computing just 14 digits would
require the equivalent of counting collisions between a 1 kg ball and Jupiter! Even if we
change the units from kg to grams, we are still in trouble! To say nothing of the time it
would take to record the collisions!

Epilogue: This discussion has a fascinating epilogue. Last year, Adam Brown, a physi-
cist, described an isomorphism between Galperin’s experiment and Glover’s famous quan-
tum search algorithm! An unexpected connection between π, Dynamics, and quantum
computing! Read this article to learn more about quantum search and this connection:
http://www.quantamagazine.org/how-pi-connects-colliding-blocks-to-a-quantum-search-algorithm-20200121/

.

A π day bonus: Look up the book ‘Not A Wake: A Dream Embodying π’s Digits
Fully For 10000 Decimals’ by Mike Keith. It is claimed to be the first book ever written
completely in πlish, that peculiar dialect of English in which the numbers of letters in
successive words follow the digits of the number π. Divided into ten sections of 1000
digits, each written in a different style (from poems to screenplays) its words “spell out”
the first 10,000 digits of π’. Just fascinating!

�Galperin (see http://www.maths.tcd.ie/~lebed/Galperin.%20Playing%20pool%20with%
20pi.pdf) proved this under the assumption that following conjecture about digits of π is true: for every
N , the first 2N consecutive digits of π do not contain a string of N − 1 consecutive 9s in the N digits in
the right half. He proves this conjecture for N up to 108, and with very high probability for all large N .
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