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Graphs and Colorings

Graphs model binary relationships.

In a graph G = (V (G), E(G)), the objects under study
are represented by vertices included in V(G).

If two objects are “related” then their corresponding
vertices, say u and v in V (G), are joined by an edge
that is represented as uv in E(G).
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Graphs and Colorings

For a university semester, we could define a ‘conflict’
graph on courses, where each course is a vertex, and
edges occur between pairs of vertices corresponding to
courses with overlapping time.

Then we could be interested in assigning rooms
(colors) to the courses (vertices), such that a particular
room is not assigned to two courses with overlapping
times (vertices joined by an edge get different colors).

The least number of rooms (colors) that would get the
job done is called the chromatic number of the graph,
denoted χ(G).
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Graphs and Colorings

Let G = (V (G), E(G)) be a graph.

A proper k-coloring of G is a labeling of V (G) with k

labels such that adjacent vertices get distinct labels.

Chromatic Number, χ(G) , is the least k such that G

has a proper k-coloring.
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Graphs and Colorings

Some examples of Graphs:

Kn : Complete graph on n vertices. Each of the
(n
2

)

pairs of vertices is joined by an edge. χ(Kn) = n

Pn : Path on n vertices. χ(Pn) = 2

Cn : Cycle on n vertices. χ(C2k) = 2, χ(C2k+1) = 3

Kn1,n2,...,nt
: Complete t-partite graph on

n1 + n2 + . . . + nt vertices. χ(Kn1,n2,...,nt
) = t
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Symmetries in a Graph

In Kn, it is impossible to distinguish between any two
vertices, u and v, because they are structurally
identical.

More formally, there is an bijection on V (Kn) that
interchanges u and v without affecting the structure of
Kn.

Such bijections are called automorphisms of G.
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Symmetries in a Graph

An automorphism of G is ρ : V (G) → V (G),
a bijection that preserves edges and non-edges of G,
i.e., uv ∈ E(G) iff ρ(u)ρ(v) ∈ E(G).

Aut(G) is the set (group) of all automorphisms of G.

Aut(Kn) = Sn, the Symmetric group formed by all the
permutations on n objects.

Aut(Cn) = D2n, the Dihedral group formed by rotations
and flips.
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Distinguishing Vertices

If we want to distinguish vertices in Kn, we have to give
each of them a distinct name (label). So, Kn needs n

labels.

But, many times we can get away with using far less
number of labels.
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Distinguishing Vertices

“Suppose you have a key ring with n identical looking
keys. You wish to label the handles of the keys in order
to tell them apart. How many labels will you need?”

We want to figure out how many labels we need to
distinguish vertices in Cn.
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Distinguishing Vertices
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Distinguishing Vertices

C3, C4, and C5 need three labels.

When n ≥ 6, Cn needs only two labels !!

So we want to be able to ‘decode’ the ‘real identity’ of a
vertex using only these (few) labels and the structure of
the graph.
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Distinguishing Number

A distinguishing k-labeling of G is a labeling of V (G)
with k labels such that the only color-preserving
automorphism of G is the identity.

Distinguishing Number, D(G) , is the least k such that
G has a distinguishing k-labeling.

Introduced by Albertson and Collins in 1996.

Since then, a whole class of research literature
combining graphs and group actions has arisen around
this topic.
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Distinguishing Number

Some examples:

D(G) = 1 if and only if Aut(G) = {identity}

D(Kn) = D(K1,n) = n. Both have Aut(G) = Sn.

It is possible to construct a graph G with Aut(G) = Sn

and D(G) =
√

n.

D(Kn,n) = n + 1.

D(Cn) equals 3 if 3 ≤ n ≤ 5, and equals 2 if n ≥ 6.

D(Pn) = 2.
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Distinguishing Number

In general the value of the Distinguishing number is
strongly influenced by the relevant Automorphism
group, rather than the particular graph.

For a group Γ, D(Γ) = {D(G) : Aut(G) ∼= Γ, G graph}
Theorem [Albertson + Collins, 1996]
D(D2n) = {2} unless n = 3, 4, 5, 6, 10, in which case,
D(D2n) = {2, 3}.

Theorem [Tymoczko, 2004]
D(Sn) ⊆ {2, 3, . . . , n}.

Conjecture [Klavzar+ Wong + Zhu, 2005]
D(Sn) = {⌈n1/k⌉ : k ∈ Z

+}.
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Distinguishing through proper colorings

Distinguishing numbers tend to be fixed numbers that
depend more on the automorphism structure than the
graph structure.

We want a proper coloring (not just an unrestricted
labeling) that breaks all the symmetries of a graph,
identifying each of its vertices uniquely.
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Distinguishing through proper colorings

Distinguishing numbers tend to be fixed numbers that
depend more on the automorphism structure than the
graph structure.

We want a proper coloring (not just an unrestricted
labeling) that breaks all the symmetries of a graph,
identifying each of its vertices uniquely.

Recall the conflict graph for courses. “Find a coloring of
the conflict graph that uniquely identifies each course
as well as specifying the room each would use.”

We not only ‘decode’ the ‘real identity’ of a vertex using
only these (few) labels and the structure of the graph,
but get a useful partition of the vertices into
‘conflict-free’ subsets.
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Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper
k-coloring of G such that the only color-preserving
automorphism of G is the identity.

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

Introduced by Collins and Trenk in 2005.
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Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper
k-coloring of G such that the only color-preserving
automorphism of G is the identity.

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

Introduced by Collins and Trenk in 2005.

Note that the chromatic number, χ(G), is an immediate
lower bound for χ

D
(G).
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Examples

�
�
�
�

Distinguishing

χ
D
(P2n+1) = 3 and χ

D
(P2n) = 2
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Examples
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Distinguishing

χ
D
(P2n+1) = 3 and χ

D
(P2n) = 2

Not Distinguishing
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Examples

�
�
�
�

Distinguishing

χ
D
(P2n+1) = 3 and χ

D
(P2n) = 2

Distinguishing

χ
D
(Cn) = 3 except χ

D
(C4) = χ

D
(C6) = 4
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Motivating Question

When are D(G) and χ
D
(G) small?

Just one more than the minimum allowed?
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Motivating Question

When are D(G) and χ
D
(G) small?

Just one more than the minimum allowed?

Find a large general class of graphs for which

D(G) ≤ 1 + 1

χ
D
(G) ≤ χ(G) + 1

Our answer will be in terms of Cartesian Product of
Graphs.
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Cartesian Product of Graphs

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
graphs.

G2H denotes the Cartesian product of G and H.

V (G2H) = {(u, v)|u ∈ V (G), v ∈ V (H)}.

vertex (u, v) is adjacent to vertex (w, z) if
either u = w and vz ∈ E(H) or v = z and uw ∈ E(G).
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Cartesian Product of Graphs

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
graphs.

G2H denotes the Cartesian product of G and H.

V (G2H) = {(u, v)|u ∈ V (G), v ∈ V (H)}.

vertex (u, v) is adjacent to vertex (w, z) if
either u = w and vz ∈ E(H) or v = z and uw ∈ E(G).

Extend this definition to G12G22 . . .2Gd.

Denote Gd = 2d
i=1G.

A very special but important case, Kd
2 denoted by Qd, is

the d-dimensional hypercube.
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Cartesian Product of Graphs

G H G H
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Cartesian Product of Graphs

A graph G is said to be a prime graph if whenever
G = G12G2, then either G1 or G2 is a singleton vertex.

Prime Decomposition Theorem [Sabidussi(1960) and
Vizing(1963)] Let G be a connected graph, then
G ∼= G

p1

1 2G
p2

2 2 . . .2G
pd

d , where Gi and Gj are distinct
prime graphs for i 6= j, and pi are constants.

Theorem [Imrich(1969) and Miller(1970)]
All automorphisms of a cartesian product of graphs are
induced by the automorphisms of the factors and by
transpositions of isomorphic factors.
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Cartesian Product of Graphs

Fact: Let G = 2d
i=1Gi. Then χ(G) = max

i=1,...,d
{χ(Gi)}

Let fi be an optimal proper coloring of Gi, i = 1, . . . , d.

Canonical Coloring fd : V (G) → {0, 1, . . . , t − 1} as

fd(v1, v2, . . . , vd) =
d

∑

i=1

fi(vi) mod t , t = max
i

{χ(Gi)}

There is an edge between v and v′ in G if and only if they
differ in only one coordinate, say vi and v′

i. So, viv
′
i is an

edge in Gi. Then fd(v) − fd(v′) = fi(vi) − fi(v
′
i) which is

nonzero modulo t because fi is a proper coloring. Thus, fd

gives a proper coloring of 2d
i=1Gi.
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Small Distinguishing Number

Theorem [Bogstad + Cowen, 2004]
D(Qd) = 2, for d ≥ 4, and D(Q2) = D(Q3) = 3
where Qd is the d-dimensional hypercube.

Theorem [Albertson, 2005]
D(Gd) = 2, for d ≥ 4, if G is a prime graph.

Theorem [Klavzar + Zhu , 2006]
D(Gd) = 2, for d ≥ 3.

Follows from D(Kd
n) = 2, proved using a probabilistic

argument (when automorphisms of G have few fixed
points then D(G) is large).
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Large Distinguishing Chromatic Number

Recall, χ(G) ≤ χ
D
(G)

In general, χ
D
(G) might need many more colors than

χ(G).

Theorem [Collins + Trenk, 2006]
χ

D
(G) = n(G) ⇔ G is a complete multipartite graph.

χ
D
(Kn1,n2,...,nt

) =
∑t

i=1 ni while χ(Kn1,n2,...,nt
) = t,

arbitrarily far apart.

Making our task more difficult.
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Hamming Graphs and Hypercubes

Theorem [Choi + Hartke + Kaul, 2006+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.
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Hamming Graphs and Hypercubes

Theorem [Choi + Hartke + Kaul, 2006+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.

Corollary : Given t ≥ 2, χ
D
(Kd

t ) ≤ t + 1 , for d ≥ 5.

Both these upper bounds are 1 more than their respective lower
bounds.
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Hamming Graphs and Hypercubes

Theorem [Choi + Hartke + Kaul, 2006+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.

Corollary : Given t ≥ 2, χ
D
(Kd

t ) ≤ t + 1 , for d ≥ 5.

Both these upper bounds are 1 more than their respective lower
bounds.

These results allow us to exactly determine the
distinguishing chromatic number of hypercubes.

Corollary : χ
D
(Qd) = 3 , for d ≥ 5.
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Main Theorem

Theorem [Choi + Hartke + Kaul, 2006+]
Let G be a graph. Then there exists an integer dG

such that for all d ≥ dG , χ
D
(Gd) ≤ χ(G) + 1.

By the Prime Decomposition Theorem for Graphs,
G = G

p1

1 2G
p2

2 2 . . .2G
pk

k , where Gi are distinct prime
graphs. (This prime decomposition can be found in
polynomial time)

Then, dG = max
i=1,...,k

{ lg n(Gi)
pi

} + 5

Note, n(G) = (n(G1))
p1 ∗ (n(G2))

p2 ∗ · · · ∗ (n(Gk))
pk

At worst, dG = lg n(G) + 5 suffices.
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Main Theorem

Theorem [Choi + Hartke + Kaul, 2006+]
Let G be a graph. Then there exists an integer dG

such that for all d ≥ dG , χ
D
(Gd) ≤ χ(G) + 1.

dG = max
i=1,...,k

{ lg n(Gi)
pi

} + 5

when, n(G) = (n(G1))
p1 ∗ (n(G2))

p2 ∗ · · · ∗ (n(Gk))
pk

dG is unlikely to be a constant, as the example of
Complete Multipartite Graphs indicates −
pushing χ

D
(Kn1,n2,...,nt

) down from n(G) to t + 1 can not
happen with only a fixed number of products.
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Proof Idea for Main Theorem

Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the
color classes of G.

Now work with H.

BUT G ⊆ H ; χ
D
(G) ≤ χ

D
(H) !
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Proof Idea for Main Theorem

Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the
color classes of G.

Then construct a distinguishing proper coloring of Hd

that is also a distinguishing proper coloring of Gd.

Study Distinguishing Chromatic Number of
Cartesian Products of Complete Multipartite Graphs.
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Complete Multipartite Graphs

Theorem [Choi + Hartke + Kaul, 2006+]
Let H be a complete multipartite graph. Then
χ

D
(Hd) ≤ χ(H) + 1 , for d ≥ lg n(H) + 5 .

This is already enough to prove Theorem 1 for prime
graphs.

2

Graph Packing – p.16/18



Complete Multipartite Graphs

Theorem [Choi + Hartke + Kaul, 2006+]
Let H be a complete multipartite graph. Then
χ

D
(Hd) ≤ χ(H) + 1 , for d ≥ lg n(H) + 5 .

This is already enough to prove Theorem 1 for prime
graphs.

Theorem [Choi + Hartke + Kaul, 2006+]
Let H = 2k

i=1H
pi

i , where Hi are distinct complete
multipartite graphs. Then

χ
D
(Hd) ≤ χ(H) + 1,

for d ≥ max
i=1,...,k

{ lg ni

pi
} + 5, where ni = n(Hi).
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Outline of the Proof for Hamming Graphs

Start with the canonical proper coloring fd of cartesian
products of graphs, fd : V (Kd

t ) → {0, 1, . . . , t − 1} with

fd(v) =
d
∑

i=1
f(vi) mod t,

where f(vi) = i is an optimal proper coloring of Kt.
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Outline of the Proof for Hamming Graphs

Derive f ∗ from fd by changing the color of the following
vertices from fd(v) to ∗ :

Origin : 0000 . . . 000 .

Group 1 : A =

⌊ d

2
⌋

⋃

i=1

Ai , where Ai = {e1

i,j | 1 + i ≤ j ≤ d + 1 − i}

v∗ : the vertex with all coordinates equal to 1

except for the ⌈d + 1

2
⌉th coordinate which equals 0.

e1
i,j is the vertex with all coordinates equal to 0 except for

the ith and jth coordinates which equal 1.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 1. Distinguish v∗ from the Origin and the Group 1 by
counting their distance two neighbors in the color class ∗.

In Q6, v∗ has no vertices with color ∗ within distance two of
it.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 2. Distinguish the Origin by counting the distance two
neighbors in color class ∗.

In Q6, Origin is the only vertex with color ∗ that is within
distance two of every other vertex of color ∗.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 3. Assign the vector representations of weight one,
with 1 as the non-zero coordinate, to the correct vertices.

In Q6, vertex 100000 has 5 neighbors in Group 1,
010000 has 4,
001000 has 3 (and is at distance 6 from v∗),
000100 has 3 (and is at distance 4 from v∗),
000010 has 2, and
000001 has 1 such neighbors.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 4. Assign the vector representations of weight one,
with k > 1 as the non-zero coordinate, to the correct
vertices, by recovering the original canonical colors of all
the vertices.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 5. Assign the vector representations of weight
greater than one to the correct vertices.

Let x be a vertex with weight ω ≥ 2. Then x is the unique

neighbor of the vertices, y1, y2, . . . , yω, formed by changing

exactly one non-zero coordinate of x to zero that is not the

Origin.

For example, in Q6, 110000 is the unique vertex with 100000

and 010000 as its only weight one neighbors, and so on.
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