Distinguishing Chromatic Number of Graphs

Hemanshu Kaul
kaul@math.iit.edu
www.math.iit.edu/~kaul

Illinois Institute of Technology
In K_n, it is impossible to distinguish between any two vertices, u and v, because they are structurally identical.

More formally, $\text{Aut}(K_n) = S_n$, the Symmetric group formed by all the permutations on n objects.

Similarly, $\text{Aut}(C_n) = D_{2n}$, the Dihedral group formed by rotations and flips.
If we want to distinguish vertices in K_n, we have to give each of them a distinct name (label). So, K_n needs n labels.

But, many times we can get away with using far less number of labels.
“Suppose you have a key ring with n identical looking keys. You wish to label the handles of the keys in order to tell them apart. How many labels will you need?”

We want to figure out how many labels we need to distinguish vertices in C_n.
“Suppose you have a key ring with n identical looking keys. You wish to label the handles of the keys in order to tell them apart. How many labels will you need?”

We want to figure out how many labels we need to distinguish vertices in C_n.

C_3, C_4, and C_5 need three labels.

When $n \geq 6$, C_n needs only two labels!!

So we want to be able to ‘decode’ the ‘real identity’ of a vertex using only these (few) labels and the structure of the graph.
A distinguishing k-labeling of G is a labeling of $V(G)$ with k labels such that the only color-preserving automorphism of G is the identity.

Distinguishing Number, $D(G)$, is the least k such that G has a distinguishing k-labeling.

Introduced by Albertson and Collins in 1996.

Since then, a whole class of research literature combining graphs and group actions has arisen around this topic.
Some examples:

\[D(G) = 1 \text{ if and only if } Aut(G) = \{\text{identity}\} \]

\[D(K_n) = D(K_{1,n}) = n. \text{ Both have } Aut(G) = S_n. \]

It is possible to construct a graph \(G \) with \(Aut(G) = S_n \) and \(D(G) = \sqrt{n} \).

\[D(K_{n,n}) = n + 1. \]

\(D(C_n) \) equals 3 if \(3 \leq n \leq 5 \), and equals 2 if \(n \geq 6 \).

\[D(P_n) = 2. \]
In general the value of the Distinguishing number is strongly influenced by the relevant Automorphism group, rather than the particular graph.

For a group Γ, $D(\Gamma) = \{D(G) : \text{Aut}(G) \cong \Gamma, G \text{ graph}\}$

Theorem [Albertson + Collins, 1996]
$D(D_{2n}) = \{2\}$ unless $n = 3, 4, 5, 6, 10$, in which case, $D(D_{2n}) = \{2, 3\}$.

Theorem [Tymoczko, 2004]
$D(S_n) \subseteq \{2, 3, \ldots, n\}$.

Conjecture [Klavzar+ Wong + Zhu, 2005]
$D(S_n) = \{\lfloor n^{1/k} \rfloor : k \in \mathbb{Z}^+\}$.
Distinguishing numbers tend to be fixed numbers that depend more on the automorphism structure than the graph structure.

We want a proper coloring (not just an unrestricted labeling) that breaks all the symmetries of a graph, identifying each of its vertices uniquely.
For a university semester, we could define a ‘conflict’ graph on courses, where each course is a vertex, and edges occur between pairs of vertices corresponding to courses with overlapping time.

We want to assign rooms to courses (through a proper coloring). and more
Distinguishing through proper colorings

For a university semester, we could define a ‘conflict’ graph on courses, where each course is a vertex, and edges occur between pairs of vertices corresponding to courses with overlapping time.

We want to assign rooms to courses (through a proper coloring). and more

“Find a coloring of the conflict graph that uniquely identifies each course as well as specifying the room each would use.”

We not only ‘decode’ the ‘real identity’ of a vertex using only these (few) labels and the structure of the graph, but get a useful partition of the vertices into ‘conflict-free’ subsets.
A distinguishing proper k-coloring of G is a proper k-coloring of G such that the only color-preserving automorphism of G is the identity.

Distinguishing Chromatic Number, $\chi_D(G)$, is the least k such that G has a distinguishing proper k-coloring.

Introduced by Collins and Trenk in 2005.
A distinguishing proper k-coloring of G is a proper k-coloring of G such that the only color-preserving automorphism of G is the identity.

Distinguishing Chromatic Number, $\chi_D(G)$, is the least k such that G has a distinguishing proper k-coloring.

Introduced by Collins and Trenk in 2005.

Theorem [Collins + Trenk, 2006]

\[
\chi_D(G) \leq 2\Delta(G), \text{ with equality iff } G = K_{\Delta,\Delta} \text{ or } C_6.
\]
A distinguishing proper k-coloring of G is a proper k-coloring of G such that the only color-preserving automorphism of G is the identity.

Distinguishing Chromatic Number, $\chi_D(G)$, is the least k such that G has a distinguishing proper k-coloring.

Introduced by Collins and Trenk in 2005.

Theorem [Collins + Trenk, 2006]

$\chi_D(G) \leq 2\Delta(G)$, with equality iff $G = K_{\Delta,\Delta}$ or C_6.

Note that the chromatic number, $\chi(G)$, is an immediate lower bound for $\chi_D(G)$.

Not Distinguishing
Examples

Not Distinguishing
Examples

Distinguishing

\[\chi_D(P_{2n+1}) = 3 \quad \text{and} \quad \chi_D(P_{2n}) = 2\]
Distinguishing

\[\chi_D(P_{2n+1}) = 3 \quad \text{and} \quad \chi_D(P_{2n}) = 2 \]

Not Distinguishing
Examples

\[\chi_D(P_{2n+1}) = 3 \text{ and } \chi_D(P_{2n}) = 2 \]

\[\chi_D(C_n) = 3 \text{ except } \chi_D(C_4) = \chi_D(C_6) = 4 \]
Motivating Question

When are $D(G)$ and $\chi_D(G)$ small?
Just one more than the minimum allowed?
Motivating Question

When are $D(G)$ and $\chi_D(G)$ small?
Just one more than the minimum allowed?

Find a large general class of graphs for which

$$D(G) \leq 1 + 1$$

$$\chi_D(G) \leq \chi(G) + 1$$

Our answer will be in terms of Cartesian Product of Graphs.
A graph G is said to be a **prime graph** if whenever $G = G_1 \square G_2$, then either G_1 or G_2 is a singleton vertex.

Prime Decomposition Theorem [Sabidussi(1960) and Vizing(1963)] Let G be a connected graph, then $G \cong G_1^{p_1} \square G_2^{p_2} \square \ldots \square G_d^{p_d}$, where G_i and G_j are distinct prime graphs for $i \neq j$, and p_i are constants.

Theorem [Imrich(1969) and Miller(1970)] All automorphisms of a cartesian product of graphs are induced by the automorphisms of the factors and by transpositions of isomorphic factors.
Fact: Let $G = \square_{i=1}^{d} G_i$. Then $\chi(G) = \max_{i=1,\ldots,d} \{\chi(G_i)\}$

Let f_i be an optimal proper coloring of G_i, $i = 1, \ldots, d$.

Canonical Coloring $f^d : V(G) \to \{0, 1, \ldots, t - 1\}$ as

$$f^d(v_1, v_2, \ldots, v_d) = \sum_{i=1}^{d} f_i(v_i) \mod t , \quad t = \max_{i} \{\chi(G_i)\}$$

Notation: $G^d = \square_{i=1}^{d} G$
Theorem [Bogstad + Cowen, 2004]
\[D(Q_d) = 2, \text{ for } d \geq 4, \text{ and } D(Q_2) = D(Q_3) = 3 \]
where \(Q_d \) is the \(d \)-dimensional hypercube.

Theorem [Albertson, 2005]
\[D(G^d) = 2, \text{ for } d \geq 4, \text{ if } G \text{ is a prime graph.} \]

Theorem [Klavzar + Zhu, 2006]
\[D(G^d) = 2, \text{ for } d \geq 3. \]

Follows from \(D(K_n^d) = 2 \), proved using a probabilistic argument (when automorphisms of \(G \) have few fixed points then \(D(G) \) is large).
Recall, $\chi(G) \leq \chi_D(G)$

In general, $\chi_D(G)$ might need many more colors than $\chi(G)$.

Theorem [Collins + Trenk, 2006]
$\chi_D(G) = n(G) \iff G$ is a complete multipartite graph.

$\chi_D(K_{n_1,n_2,\ldots,n_t}) = \sum_{i=1}^{t} n_i$ while $\chi(K_{n_1,n_2,\ldots,n_t}) = t$,

Making our task more difficult.
Theorem [Choi + Hartke + K., 2006+]
Given $t_i \geq 2$, $\chi_D(\Box_{i=1}^{d} K_{t_i}) \leq \max_i \{t_i\} + 1$, for $d \geq 5$.
Theorem [Choi + Hartke + K., 2006+]
Given $t_i \geq 2$, $\chi_D(\square_{i=1}^{d} K_{t_i}) \leq \max_i \{t_i\} + 1$, for $d \geq 5$.

Corollary: Given $t \geq 2$, $\chi_D(K_t^d) \leq t + 1$, for $d \geq 5$.

Both these upper bounds are 1 more than their respective lower bounds.
Hamming Graphs and Hypercubes

Theorem [Choi + Hartke + K., 2006+]
Given $t_i \geq 2$, \(\chi_D(\square^d_{i=1} K_{t_i}) \leq \max_i \{t_i\} + 1 \), for $d \geq 5$.

Corollary: Given $t \geq 2$, \(\chi_D(K^d_t) \leq t + 1 \), for $d \geq 5$.

Both these upper bounds are 1 more than their respective lower bounds.

These results allow us to exactly determine the distinguishing chromatic number of hypercubes.

Corollary: \(\chi_D(Q_d) = 3 \), for $d \geq 5$.
Main Theorem

Theorem [Choi + Hartke + K., 2006+]
Let G be a graph. Then there exists an integer d_G such that for all $d \geq d_G$, $\chi_D(G^d) \leq \chi(G) + 1$.

By the Prime Decomposition Theorem for Graphs, $G = G_1^{p_1} \square G_2^{p_2} \square \ldots \square G_k^{p_k}$, where G_i are distinct prime graphs. (This prime decomposition can be found in polynomial time)

Then, $d_G = \max_{i=1,\ldots,k} \left\{ \frac{\lg n(G_i)}{p_i} \right\} + 5$

Note, $n(G) = (n(G_1))^{p_1} \cdot (n(G_2))^{p_2} \cdots \cdot (n(G_k))^{p_k}$

At worst, $d_G = \lg n(G) + 5$ suffices.
Main Theorem

Theorem [Choi + Hartke + K., 2006+]
Let G be a graph. Then there exists an integer d_G such that for all $d \geq d_G$, $\chi_D(G^d) \leq \chi(G) + 1$.

\[d_G = \max_{i=1,\ldots,k} \left\{ \frac{\lg n(G_i)}{p_i} \right\} + 5 \]

when, $n(G) = (n(G_1))^{p_1} \ast (n(G_2))^{p_2} \ast \cdots \ast (n(G_k))^{p_k}$

d_G is unlikely to be a constant, as the example of Complete Multipartite Graphs indicates –

pushing $\chi_D(K_{n_1,n_2,\ldots,n_t})$ down from $n(G)$ to $t + 1$ can not happen with only a fixed number of products.
Proof Idea for Main Theorem

Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the color classes of G.

Now work with H.

BUT $G \subseteq H \not\Rightarrow \chi_D(G) \leq \chi_D(H)$!
Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the color classes of G.

Then construct a distinguishing proper coloring of H^d that is also a distinguishing proper coloring of G^d.

We identify (relatively small) subgraphs which, when distinguished, can be used to distinguish the parent graph.
Conjecture: For any fixed $\rho > 0$, there exists a graph G such that $\chi_D(G^d) > \chi(G) + 1$ for $d \leq \rho$.
Conjecture: For any fixed $\rho > 0$, there exists a graph G such that $\chi_D(G^d) > \chi(G) + 1$ for $d \leq \rho$.

Problem: Characterize graphs G with $\chi_D(G^d) = \chi(G)$.
Conjecture: For any fixed $\rho > 0$, there exists a graph G such that $\chi_D(G^d) > \chi(G) + 1$ for $d \leq \rho$.

Problem: Characterize graphs G with $\chi_D(G^d) = \chi(G)$.

Problem: Find other families of graphs for which the distinguishing chromatic number is close to its chromatic number.

Theorem [Collins + Hovey + Trenk, 2008+] If $Aut(G) = \mathbb{Z}_p^n$ then $\chi_D(G) \leq \chi(G) + 1$.