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Graphs

What is a Graph?

is a mathematical structure that represents
relationships within a collection of “objects”.

Formally, a graph , the objects under study
are represented by included in V(G).

If two objects are “related” then their corresponding vertices,
say u and v in V(G), are joined by an that is represented
as uvin




Graphs

Examples of Graphs

For a university semester, we could define a

: where each course is a vertex, and
edges occur between pairs of vertices corresponding to
courses with overlapping timeslots.

More generally, Conflict Graph and Scheduling Problems.

The most famous example of this is the map coloring problem.
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Examples of Graphs
What is the least number of colors needed to color a map so
that adjacent regions in the map get different colors?
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Examples of Graphs

What is the least number of colors needed to color a map so
that adjacent regions in the map get different colors?

(All figures courtesy: Wikimedia.org)

ILLINOIS INSTITUTE OF TECHMNOLOSY
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Examples of Graphs
Historically, the first explicit use of Graphs was by Euler for
solving Konigsberg Bridges Problem:
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Examples of Graphs

(All figures courtesy: Wikimedia.org)

More generally, finding a fixed subgraph of particular kind in a
given graph,
or a routing problem in a graph.
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Examples of Graphs
Vertices are internet routers, and edges are links between
them.

(Courtesy: Wikimedia.org)

INNSTITUTE OF TECHMNOLOSGY
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Examples of Graphs
Vertices are various kinds of Herpes virus protein (circles) and
human proteins (squares), and edges correspond to
interactions between these proteins.
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Examples of Graphs
Vertices are cities around the world, and edges are airline
connections between any two cities.

ILLINOIS INSTITUTE OF TECHMNOLOSY

1Catirtacy: Phue Aarm)
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Examples of Graphs

Often the relationships are not fixed but change with time:

@ Vertices are webpages and edges correspond to weblinks

@ Vertices are highschool students and edges correspond to
friendships

@ Vertices are zebras and edges correspond to
proximity/interaction

@ Vertices are office workers and edges correspond to
project teams

@ and so on.
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The General Problem

Analysis of longitudinal data of “social interactions”
to identify persistent patterns or substructures/ communities.

“Social Interactions” are represented as edges over a set of
(fixed) vertices, the population under consideration.

Longitudinal data means that these edges are time dependent,
interactions change as time goes by.
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1. Focus on one particular point in time.
Which time? How to incorporate the evolution of interactions?
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The General Problem

Traditionally, dynamic is made static:

1. Focus on one particular point in time.
Which time? How to incorporate the evolution of interactions?

2. Aggregate the data into a single weighted graph.
One such weighted graph can arise from many sequences of such
data.
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Interval based interaction stream, for example friendships in a
social network.

Instantaneous interaction, for example email communications.
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Dynamic Graph Data

Collected data comes from GPS sensors, digital recording of
emails, or human observation of animals grooming:

the instantaneous times at which the interactions were
observed to be present.

Temporal Errors: Data Collection/ Sampling error.

Topological Errors:

Representing continuous behavior discretely leads to
missing interactions that should be present and
recording spurious interactions that are not meaningful.
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Temporal Scale of Dynamic Graphs
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Temporal Scale of Dynamic Graphs
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A is a time series of Graph snapshots.

Each snapshot represents a state of the system over an
interval of time such as a minute, a day, or a year in the life of
the system.

The represents
since all the interactions are lumped
together discarding their order in time.
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Temporal Scale of Dynamic Graphs
Online communications: Even though individual
communications last only seconds or minutes, aggregation at
the level of hours or days might be needed to find the correct
timescale.
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Enron Email is a publicly available dataset of e-mails sent between
employees of the Enron corporation. Each email address represents
a vertex and an email exchange represents an edge.
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Temporal Scale of Dynamic Graphs
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Enron Email Dataset.

Event 1 represents the time when Karl Rove sold off his energy
stocks,

Event 2 represents the unsuccessful attempt of Dynegy to acquire the
bankrupt Enron,

Event 3 represents the resignation of Enron’s CEO.
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Temporal Scale of Dynamic Graphs

Animal social interactions:

For example, grooming interactions of baboons usually have a
temporal scale ranging from seconds to minutes,

mother to infant or peer to peer relationships have a scale
extending over years,

an individual troop membership, splitting or formation of new
troops extends from years to decades.
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Temporal Scale of Dynamic Graphs
Human social interactions: Patterns of interaction of
conversations, friendships, and kinship occupy different
temporal scales.
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Figure 1. Interaction data from McFarland's classroom observations viewed at various levels of time
aggregation from 35 minutes (one entire class period) to 1 minute (two to three turns of interaction).
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Temporal Scale of Dynamic Graphs
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Reality Mining network consists of social interactions among 90 MIT students and
faculty over a nine month period with spatial proximity between people (through
bluetooth connection) implying a social interaction.

Haggle Infocomm network consists of social interactions among attendees at an IEEE
Infocom conference. There were 41 participants and the duration of the conference

was 4 days.
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Dynamic Graph

A is a sequence of edges (over a
fixed vertex set V = {1,..., N}) ordered by their time labels:

E={(i,t)ieVxV,te[t,. . T}
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Dynamic Graph

Let P be a partition of the timeline [1,..., T]:
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Introduction
Dynamic Graph
Let P be a partition of the timeline [1,..., T]:

73:,01,,02,---,,0;( = [t0>t1)7[t1at2)a"'v[tkv T]

A is a sequence of graphs defined over the
edge-stream E and a fixed partition P of [T]:

with E(Gj) = {(7, t)[t € p;} and
each G; is associated with the ith interval p; in P.
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Dynamic Graph
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Introduction

Some Related Work

Empirical Evidence:

Fourier Transform Analysis of Graph parameters
Clauset, A. and Eagle, N.: Persistence and periodicity in a dynamic proximity network,
DIMACS 2007.

Dynamic Graph Visualization
Moody, J., McFarland, D., and Bender-deMoll, S.: Dynamic network visualization,
American Journal of Sociology, 2005.

Empirical Analysis of Graph Parameters
Krings, G., Karsai, M., Bernharsson, S., Blondel, V. D., and Saramaki, J.: Effects of time
window size and placement on the structure of aggregated networks, CoRR 2012.
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Some Related Work

Heuristics:

Change detection in interaction streams
Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P. S.: Graphscope: parameter-free
mining of large time-evolving graphs, Proc. 13th ACM SIGKDD, 2007.

Community detection in Biological Data
Berger-Wolf, T., Tantipathananandh, C., and Kempe, D.: Dynamic Community
Identification, In: Link Mining: Models, Algorithms, and Applications, 2010.

Temporal scale detection via linear Graph functions

Sulo, R., Berger-Wolf, T., and Grossman, R.: Meaningful selection of temporal
resolution for dynamic networks, Proc. 8th Workshop on Mining and Learning with
Graphs, 2010.
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Axioms

What properties should a temporal scale satisfy?

Motivated by axiomatic approaches to “Clustering”:

Impossibility result of Kleinberg 2002.

Quality-based axioms of Ackerman, Ben-David 2008.
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Axioms

Q, a that gives a numerical value to a
particular partition of the timeline and the corresponding
dynamic Graph indicating its “quality”.

What properties must Q satisfy?
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Axioms
Within Interval Order Invariance:

For an optimal partition, permutations of interactions within the
same interval do not drastically change the quality of the
dynamic graph.

Some interactions are observed happening in a particular order might be an artifact of

looking at them at too fine of a temporal resolution.
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Axioms
Across Interval Order Criticality:

For an optimal partition, permutations of edges across different
intervals will change the quality of the partition.
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Axioms

Axioms

Measure Unit Invariance:

Uniform scaling of the oversampling factor does not change the
quality of the dynamic Graph.

=
o




Axioms

Axioms

The constant stream (same set of edges at each moment of
time) has no time scale, the optimal partition is the whole
timeline.




Axioms

Axioms

The quality function is the same for any partition of the stream
with no temporal scale, a temporal version of the Erdos-Renyi
random graph (noise).
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Axioms

A shift of the time line of a temporal stream, does not drastically
change the quality of the dynamic Graph. The optimal partition
of the stream is independent of the time line’s starting point.




Algorithm

A Persistence Based Approach

Interactions observed fleetingly are often not interesting and
they usually indicate that the data collection process is noisy.

Interactions that persist for a while, truly represent what is more
essential for the underlying system.

What is, then, the “right” temporal scale that can capture the
persistence of structure in time, while smoothing out temporal
and topological noise?
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A Persistence Based Approach

Instead of a global quality function (for the the whole partition of
the timeline), we will use a local quality function, g, for intervals
within the partition.

Axioms:

(a) Internal Consistency: q(p;) = q(p*)

(b) Local Monotonicity: q(pi) > q(p;)
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A Persistence Based Approach

is measured via changes in edge
frequency values as a proxy.

The Graph structure that persists over time is a manifestation of
more or less the same set of edges occurring consistently.

At greater computational cost, “edge” can be replaced by any
fixed substructure.

Using edges minimizes any assumptions about any
substructures in the data.
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A Persistence Based Approach

High persistence of Graph structure implies persistence of
edge frequency values, but the converse is not necessarily true.

A

Pi |




Algorithm

A Persistence Based Approach

is the frequency vector (of length |E|) representing the
number of times each edge occurs in the interval p of the
partition.

is the difference (via an |, norm) between freq(p;) and
freq(pi+1), frequency vectors of consecutive intervals - not
disjoint, overlap is controlled by local parameter w.
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A Persistence Based Approach

Let

LM = {i: fd(i) > fd(j),i —r <j<i+r}

where r is the radius for locality.
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A Persistence Based Approach

Two types of intervals (/, r) whose quality we want to capture:

There are no local maxima inside
interval (/,r).

The of Type 1 intervals:

~ min{fd(/), fd(r)} —min{fd(x) : | <x < r}
B r—1 '

ai

A rectangle with left side x = /, right side x = r, top
y = min{fd(l), fd(r)}, and bottom y = min{fd(x) : | < x < r}.
g1 is the slope of its diagonal.




Algorithm

A Persistence Based Approach

There are local maxima inside interval

(I,r).
Let m € LM be the value in (/, r) such that fd(m) is maximized.
The of Type 2 intervals:
min{fd(l), fd(r)} — fd(m)
%= r—1 ‘

A rectangle with left side at x = /, right side at x = r, bottom at
y = fd(m) and top at y = min{fd(/), fd(r)}.
Intuitively, when this box is deeper, we have a better interval.
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Algorithm

1. Generate potential breakpoints using local maxima:

(i) Compute Type 1 Intervals

(if) Compute Type 2 Intervals
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:




Algorithm

Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(i) Take the union of Type 1 and Type 2 intervals and their
corresponding g values.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(i) Sort the intervals by their g-values in non-increasing order,
with ties broken arbitrarily.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(iii) Initialize the set of breakpoints B := {).

lterate: Starting with the interval with the highest quality value
(either g; or @»), add the endpoints of the corresponding
interval. Let [/, r] be the next unprocessed interval. If the
endpoints of the unprocessed interval fall inside any of the
intervals already added to B, ignore the interval and move to
the next unprocessed interval.
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Algorithm

2. Synchronize Type 1 and Type 2 intervals to generate a
partition:

(iv) When the procedure quits: if B = {by,..., bc} with
by < ... < by, then our final answer is the set of intervals
[0, b1),[b1,b2), ..., [bxk, T].
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Computational Results
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Computational Results
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Synthetic data generated by using two alternating probability
distributions: the beta distribution and gaussian distribution (behaves
like noise) - alternatlng every 20 steps. Captured by the Algorithm.
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Computational Results
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Algorithm

Computational Results

Haggle (IEEE conference) data stream over a 4 day period: For

w = 4 (40 minute intervals), we see a clear separation between the
day and night frequency patterns, some of the finer partitions
correspond to intervals of length 20 minutes, 30 minutes, 50 minutes
(talk perlods) and about 3-4 hours (morning/afternoon sessions).
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Future Work/ Open Questions

Conjecture: There is no global quality function that satisfies all
the axioms.
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Future Work/ Open Questions
Conjecture: There is no global quality function that satisfies all
the axioms.

Find a global quality function that captures “many” of the
axioms.

Show that the solution of our algorithm satisfies “some” of the
global axioms.

In any algorithm, how can we determine the threshold value of
window size (w) beyond which temporal scaling is
meaningless/ useless?

How to determine best-fit subgraph within each interval in order
to minimize topological errors?

New Algorithms. New applications.
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