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Fall Coloring

or equivalently, partition V (G) into color classes such that each
vertex has a neighbor of every color (except its own).

Such a partition using k colors is called a Fall k-coloring of G.

Observe that, if G is Fall k-colorable than χ(G) ≤ k ≤ δ(G) + 1.

Sharp for G = C6k .



Fall Coloring
Graph Fall-Colouring

Figure: 2- and 3-fall-colouring of C6

Christodoulos Mitillos



Fall Coloring
Graph Fall-Colouring

Figure: C5 cannot be fall-coloured

Christodoulos Mitillos



Fall Coloring

Fall(G) is the set of all k such that G has a Fall k-coloring.

Fall(Cn) ⊆ {2,3}, and 2 ∈ Fall(Cn) iff 2|n, 3 ∈ Fall(Cn) iff
3|n.
Fall(Kn) = {n}
Complete k -partite graphs have only Fall k -colorings.
k -Trees have Fall (k + 1)-colorings.
If G is Km,m− perfect matching then Fall(G) = {2,m}
[Cockayne, Hedetneimi, 1976].
Fall(Petersen) is empty.



Fall Coloring

Introduced in this form by Dunbar, Hedetniemi, Hedetniemi,
Jacobs, Knisely, Laskar and Rall (2000).

Related versions of the problem were studied by Berge
(1960s), Cockayne, Hedetneimi (1976), Payan (1974), Erdős,
Hobbs, Payan (1982), and others.
And now again since 2000.
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independent sets?



Fall 2-colorings
Does 2 ∈ Fall(G)?
or, even more simply, Does G have two disjoint maximal
independent sets?

Berge and, independently, Payan(1974) conjectured that
every regular graph has two disjoint maximal independent
sets.
Disproved by Payan (1977)
Erdős, Hobbs, Payan (1982) improved results of Cockayne,
Hedetneimi (1976) and others to show dense graphs
(δ(G) > n −O(

√
n)) have this property.

Henning, Lowenstein, Rautenbach (2009) showed the
decision problem is NP-complete,
even when restricted to graphs of max degree 4 [Raczek,
Janczewski, Malafiejska, 2011]
On the easier side, 2-chromatic graphs without isolated
vertices are always Fall 2-colorable.



Constructions
Given G, what is Fall(G)?

This is hard to answer since Fall(G) need not be an interval of
numbers, can be empty, and may not relate to Fall sets of
subgraphs.

Can we construct a family of graphs whose Fall set equals an
arbitrary collection of integers?



Constructions

Dunbar et al., 2000
Let S = {s1, s2, . . . , sr} be given, with si 6= 1, ∀i .
Let G = Ks1 × Ks2 × . . .× Ksr . Then S ⊆ Fall(G).

Each (r − 1)-dimensional cardinal hyperplane is an independent
dominating set.



Constructions

Kaul, Mitillos 2014+
Let S = {s1, s2, . . . , sk}, be a multiset with si 6= 1, ∀i .
Let G = 2s∈S Ks.
A subset of V(G) is an independent dominating set iff it
corresponds to si vertices which share the same coordinates,
except on the i th position.



Constructions

Kaul, Mitillos 2014+
Let |S| = 2. Then the two previous constructions are identical.
Moreover, Fall(G) = S.

Kaul, Mitillos 2014+
Let |S| = 3. Fall(2s∈S Ks) is the set of all numbers which can be
expressed as sums of exactly si summands with values in
S \ {si}, for each i .

For example, when S = {2,3,4}, Fall(G) = {6,7, · · · ,12};
(like 6 = 3 + 3, 7 = 4 + 3, 8 = 4 + 4, 9 = 3 + 2 + 2 + 2, 10 = 3 + 3 + 2 + 2,
11 = 3 + 3 + 3 + 2, 12 = 4 + 4 + 4.)

On the other hand, when S = {2,3,5}, Fall(G) = {6,8, · · · ,15}.

This form of summation also works for |S| > 3 to determine the
max and min values in Fall(G).



Constructions
Dunbar et al. (2000) asked a natural question:
Can the difference between χ(G) and min Fall(G) be made
arbitrarily large?

Kaul, Mitillos 2014+
Let k ≥ 3 and let t > k . Then, there exists a graph G with
χ(G) = k and min Fall(G) = t .

We modify Kk2Kt by removing the edges of an appropriately chosen
induced (t − 1)-star from it.



Unique Coloring
Observe that If G is uniquely k -colorable, then k ∈ Fall(G).
Since there is a unique k -coloring, every vertex has a neighbor in
each color class, other than its own.

Converse is not true: e.g. Kk × Kk .

Bollobás (1978) showed that high minimum degree forces a
k -colorable graph to be k -chromatic (if δ(G) > k−2

k−1n(G)) and
uniquely k -colorable (if δ(G) > 3k−5

3k−2n(G)).

Can we show something better for Fall coloring?



Unique Coloring

Kaul, Mitillos 2014+
Let G be a k -colorable graph on n vertices, for 2 ≤ k ≤ n.
If δ(G) > k−2

k−1n, then every k -coloring of G is also a Fall
k -coloring.

This is sharp.



Unique Coloring

Kaul, Mitillos 2014+
Let G be a k -colorable, k−2

k−1n-regular graph, for 2 ≤ k ≤ n.
Then every k -coloring of G is either a Fall k -coloring or can be
converted to a (k − 1)-fall-coloring, by merging two color
classes.
Furthermore, there always exists some graph as described
above, which is (k − 1)-fall-colorable.

The graph which shows the sharpness of the previous result is
none other than the Turán Graph, T (n, (k − 1)).



Graph Products
Cartesian product of graphs is well-behaved under Fall coloring.

Kaul, Mitillos 2014+
Let k ∈ Fall(G) and let H be a k -colorable graph.
Then G2H is k -fall-colorable.

Usual coloring works.

We have that Fall(G2H) ⊇ (Fall(G) ∪ Fall(H)) \ [χ(G2H)− 1].
Regarding equality, consider that C52C5 is 5-fall-colorable,
even though C5 is not.



Graph Products
Similarly, for categorical product of graphs:

Kaul, Mitillos 2014+
Let k ∈ Fall(G) and let H have no trivial components. Then
k ∈ Fall(G × H).

The above tells us that Fall(G) ∪ Fall(H) ⊆ Fall(G × H).



Perfect Graphs
A graph G is said to be a threshold graph iff it can be
constructed iteratively by adding a new vertex, at each step,
whose neighborhood is determined by its type:

1 Type 0 vertices are not adjacent to any previously added
vertices.

2 Type 1 vertices are adjacent to all previously added
vertices.

Thus, a threshold graph on n vertices, can be uniquely
identified by a binary string of length n, starting with a 0.



Perfect Graphs

Kaul, Mitillos 2014+
A threshold graph G is fall-colorable iff it can be described by a
bit string of the form 0+1∗.
Moreover, if G is a threshold graph described by 0+1k−1. Then,
Fall(G) = {k}.



Perfect Graphs
A graph is a split graph if its vertices can be partitioned into a
clique and an independent set.

Note that the threshold graphs are a subfamily of split graphs.

Kaul, Mitillos 2014+
Let G be a Split Graph, with independent set I and clique K , so
that K is maximal.
G is fall-colorable iff each vertex in I has exactly one
non-neighbor in K .
Moreover, in this situation, G is only k -fall-colorable, where
k = δ(G) + 1 = |K |.



Perfect Graphs
Note that in both these families, threshold graphs and split
graphs,

Fall(G) = ∅, or
Fall(G) = {ω(G)} = {χ(G)} = {δ(G) + 1}.

We conjecture that this is true for all perfect graphs.

Lyle, Drake, Laskar (2005) have shown this is true for strongly
chordal graphs.


