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A Puzzle

Can you fill in the numbers 1,2, ...,17 in the 17 circles below without
repetition so that no two consecutive numbers are placed in circles
with a line segment joining them?



Graph Packing

@ Gy =(Vq,E) and Gy = (V4, Eq), two n-vertex graphs are
said to if there exist injective mappings of the vertex
sets into [n],

Vi—[n={1,2,....,n},i=1,2,
such that the images of the edge sets do not intersect.
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Graph Packing

@ Gy =(Vq,E) and Gy = (V4, Eq), two n-vertex graphs are
said to if there exist injective mappings of the vertex
sets into [n],

Vi—[n={1,2,...,n},i=1,2,
such that the images of the edge sets do not intersect.

@ Equivalently, there exists a bijection V; <> V, such that
ec Ey=>edE.

° , the complement of Go.

@ This definition is easily generalizable to more than two
graphs, or to hypergraphs, etc.
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A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle Cp,
packs with G.

The independence number «(G) of an n-vertex graph G is
at least k if and only if G packs with K + K,_.

Proper k-coloring of n-vertex graph G : Whether G packs
with an n-vertex graph that is the union of k cliques.

Equitable k-coloring of n-vertex graph G : Whether G
packs with complement of the Turdn Graph T(n, k).

Turan-type problems : Every graph with more than
ex(n, H) edges must pack with H.

Ramsey-type problems.
“most” problems in Graph Theory.
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A Distinction

@ In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

@ In subgraph problems, (usually) at least one of the two
graphs is fixed.
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A Distinction

@ In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of

graphs.

Theorem
If e(Gi)e(Gz) < (3), then Gy and G pack.

Proof. Pick a random bijection between V(G;) and V(G>),
uniformly among the set of all n! such bijections.

Sharp for Gy = S, star of order 2m, and G, = mKo,
matching of size m, where n =2m.



A Distinction

@ In packing problems, each member of a ‘large’ family of

graphs contains each member of another ‘large’ family of
graphs.

Theorem (Bollobas, Eldridge (1978), & Teo, Yap (1990))

IfA1, Ao <n—1,and e(Gy) + e(Gz) < 2n—2, then Gy and Go
do not pack if and only if they are one of the thirteen specified
pairs of graphs.
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Conjecture (Erd0s-Soés (1962))

Let G be a graph of order n and T be a tree of size k.
Ife(G) < 5n(n— k) then T and G pack.



A Distinction

@ In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of

graphs.

Conjecture (Erd0s-Soés (1962))
Let G be a graph of order n and T be a tree of size k.
Ife(G) < 5n(n— k) then T and G pack.

@ Each graph with more than n(k — 1) edges contains every tree

of size k.
This says average degree k guarantees every tree of size k.

The corresponding minimum degree result is easy.



A Distinction

@ In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Conjecture (Erd0s-Soés (1962))

Let G be a graph of order n and T be a tree of size k.
Ife(G) < 5n(n— k) then T and G pack.

@ Sharp, if true. Take disjoint copies of k-cliques.
Known only for special classes of trees, etc.



Bollobas-Eldridge-Catlin Conjecture

Conjecture (Bollobas, Eldridge (1978), & Catlin (1976))
If (A1 +1)(Ax+1) < n-+1 then Gy and G, pack.

® If §(G) > =1, then

G contains all graphs with maximum degree at most k.

@ [f true, this conjecture would be sharp:
ADoK 41+ Ka,—1 and Ay Ka, 11 + Ka,—1



Bollobas-Eldridge-Catlin Conjecture

Conjecture (Bollobas, Eldridge (1978), & Catlin (1976))
If(Ay +1)(Az2+ 1) < n+ 1 then Gy and G, pack.

@ If true, this conjecture would be a considerable extension of

Theorem (Hajnal-Szemerédi (1971))
Every graph G has an equitable k-coloring for k > A(G) + 1.

Equitable colorings of graphs have been used to
e extend Chernoff-Hoeffding concentration bounds to
dependent random variables (Pemmaraju, 2003)
e extend Arnold-Groeneveld order statistics bounds to
dependent random variables (Kaul, Jacobson, 2006)



Bollobas-Eldridge-Catlin Conjecture

Conjecture (Bollobas, Eldridge (1978), & Catlin (1976))
If(Ay +1)(Az2+ 1) < n+1then Gy and G, pack.

@ The conjecture has only been proved when
Aq < 2 [Aigner, Brandt (1993), and Alon, Fischer (1996)],
A4 = 3 and n is huge [Csaba, Shokoufandeh, Szemerédi (2003)].
Near-packing of degree 1 [Eaton (2000)].

Gy d-degenerate, max{40A log Az, 40dAz} < n
[Bollobas, Kostochka, Nakprasit (2008)].

Gy contains no Ko ; and Ay > 17t/ [van Batenburg, Kang (2019)].



Bollobas-Eldridge-Catlin Conjecture

Conijecture (Bollobas, Eldridge (1978), & Catlin (1976))
If(A1+1)(A2+1) < n+ 1 then Gy and Gy pack.

Theorem (Kaul, Kostochka, Yu (2008))
For A, As > 300,
If(Ay +1)(Az2+1) < (0.6)n+ 1, then Gy and Gy pack.

Theorem (Sauer & Spencer (1978))
If AyAo < (0.5)n, then Gy and G pack.



Classic Results on Graph Packing

Theorem (Sauer & Spencer (1978))
If2A1A- < n, then Gy and G» pack.



Classic Results on Graph Packing
Theorem (Sauer & Spencer (1978))
If2A1As < n, then Gy and G» pack.

()] Sharp: G1 = gKg Gg D) Kg+1, or GQ = Kn n with g odd.
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Classic Results on Graph Packing

Characterization of the extremal graphs for the
Sauer-Spencer Theorem.

Theorem (Kaul, Kostochka (2007))
If2A1A5 < n, then
Gy and Go do not pack if and only if

one of Gy and Gy is a perfect matching and the other either is
Ko o with 3 odd or contains Ko, 4.



Classic Results on Graph Packing

Theorem (Brandt (1994))

If G is agraph and T is a tree with ¢(T) leaves, both on n
vertices, and 3A(G) + ¢(T) —2 < nthen G and T pack.

@ A partial step towards the Erd6s-Sos conjecture: a graph
G contains every tree T with ¢(T) < 3§(G) — 2n + 4.



Classic Results on Graph Packing

Theorem (Brandt (1994))

If G is agraph and T is a tree with ¢(T) leaves, both on n
vertices, and 3A(G) + ¢(T) —2 < nthen G and T pack.

@ Characterization of extremal graphs?



Extremal Graphs for Brandt

Theorem (Brandt (1994))

If Gis agraph and T is a tree with ¢(T) leaves, both on n vertices,
and3A(G) +¢(T) —2 < nthen G and T pack.



Extremal Graphs for Brandt

Theorem (Brandt (1994))

If Gis agraph and T is a tree with ¢(T) leaves, both on n vertices,
and3A(G) +¢(T)—2 < nthen G and T pack.

@ Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+))

If G is a graph and F is a forest, both on n vertices, and
3A(G) + ¢*(F) < nthen G and F pack unless n is even,
G-= gKg, and F = K1,n71 .

@ (*(F)={(F) — 2comp(F), where comp(F) denotes the number
of non-trivial components of F.

@ (*(F) represents the number of “excess leaves” compared to a
linear forest.

@ Foratree T, ¢*(T)=4(T) - 2.



A Generalization of Sauer-Spencer & Brandt

@ Recall, a graph G is c-degenerate if every subgraph of it
has a vertex of degree at most c.
It is a measure of sparseness of a graph and equivalent to
core number, or coloring number.



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n
vertices.

Let d1(G) > dz(G) > ... > d\? be the degree sequence of G, and
similarly for H.

2, & 40
If > d7"+ > d ™ < n,then G and H pack.
i=1 j=1



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n
vertices.

Let d1(G) > dZ(G) > > d,SG) be the degree sequence of G, and
similarly for H.

A & 40
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@ This strengthens Sauer-Spencer, since ¢ < A(H).



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n
vertices.

Let dfG) > dZ(G) > > d,SG) be the degree sequence of G, and
similarly for H.

9 & 40
If >, d™" + > d ™ <n, then G and H pack.
i=1 j=1

@ This also strengthens Brandt’s theorem:

if His atree, then ¢ = 1, so the second summation is just
A(G). For the first summation,

A(G) A(G)
S d" =2n(6) + Z (d™ —2) <2A(G) + ((H) - 2.



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n
vertices.

Let d1(G) > dz(G) > > d,SG) be the degree sequence of G, and
similarly for H.

9 & 40
If > d7"+> d™ <n,then G and H pack.
i=1 j=1

@ This Theorem retains all the Sauer-Spencer extremal graphs:
o H= gKQ and G D Kn/2+1
o H= 1K and G = Ky,n/2, With n/2 odd
e HD Kn/2+1 and G = gKQ
e H= Kn/g,n/g and G = gKg, with n/2 odd
And it has an additional family of extremal graphs:
o H=Ksnsand G = Kz, with s odd
(in particular, H = Ky p—1 and G = 7 Kp)
We do not know whether these are all the extremal graphs.



A Packing Puzzle

Can you fill in the numbers 1,2,...,17 in the 17 circles below
without repetition so that no two consecutive numbers are
placed in circles with a line segment joining them?



A Packing Puzzle
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A Packing Puzzle

Can you pack Py7 with this given graph?

@ Dirac (If A(G) < n/2 — 1, then G packs with C,) fails to
apply.



A Packing Puzzle

Can you pack P;7 with this given graph?

@ Sauer-Spencer (and its extension) fails to apply.



A Packing Puzzle

Can you pack P;7 with this given graph?

@ Bollobas-Eldridge-Catlin (if its true) fails to apply.



A Packing Puzzle

Can you pack P;7 with this given graph?

@ Yes! By our result (G = Py7, H be the given graph which is
2-degenerate, so ¢ = 2.)



Some Proof Ideas

@ Structural Analysis of a (hypothetical) minimal
counterexample.



Some Proof Ideas

@ Think of a bijective mapping f: V(G) — V(H) as the
multigraph with vertices V(G) and edges labelled by
G (green) or H (red).



Some Proof Ideas

@ Think of a bijective mapping f: V(G) — V(H) as the
multigraph with vertices V(G) and edges labelled by
G (green) or H (red).

AR multiqraph




Some Proof Ideas

@ Think of a bijective mapping f: V(G) — V(H) as the
multigraph with vertices V(G) and edges labelled by
G (green) or H (red).

e ling,

@ Alink is a copy of P3 with one G-edge and one H-edge,
that is a green-red (or red-green) path.
We will also say: uv-link, GH-link, etc.



Some Proof Ideas

@ From a given mapping f, a uv-swap results in a new
mapping f’ with f'(u) = f(v), f(v) = f(u),and f' = f
otherwise.

That is, u and v exchange their green-neighbors.



Some Proof Ideas
@ From a given mapping f, a uv-swap results in a new
mapping ' with f'(u) = f(v), f'(v) = f(u),and f' = f
otherwise.
That is, u and v exchange their green-neighbors.

uv-;w; @

\9.




Some Proof Ideas

@ A quasipacking of G with H is a bijective mapping f whose
multigraph is simple except for a single pair of vertices
joined by both an G-edge and a H-edge (the conflicting
edge).



Outline of the Proof - |

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n

vertices. Let d1(G) > dz(G) > > d,(,G) be the degree sequence
of G, and similarly for H.

D ) & 40
If > d7" + > d ™ <n,then G and H pack.

i=1 j=1



Outline of the Proof - |

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n

vertices. Let d1(G) > déG) > > d,gG) be the degree sequence
of G, and similarly for H.

9, & 4@
If > "™+ > d™ <n, then G and H pack.
i=1 J=1

@ Consider a pair of graphs (G, H) satisfying the given
condition, with H being c-degenerate, each on n vertices,
that do not pack; furthermore assume that H is
edge-minimal with this property.

Thus for any edge e in H, G and H — e pack, and so there
is a quasipacking of H and G with conflicting edge e.



Outline of the Proof - |

@ Consider a pair of graphs (G, H) satisfying the given
condition, with H being c-degenerate, each on n vertices,
that do not pack; furthermore assume that H is
edge-minimal with this property.

Thus for any edge e in H, G and H — e pack, and so there
is a quasipacking of H and G with conflicting edge e.

@ Let U’ be a vertex of minimum positive degree in H, let
x" € Ny(U'), and consider a quasipacking f of G with H
with conflicting edge v/x’. Let u = f~'(u’) and x = f~1(x’).




Outline of the Proof - |

@ Let U’ be a vertex of minimum positive degree in H, let
x" € Ny(u'), and consider a quasipacking f of G with H
with conflicting edge v'x". Let u = f~1(v') and x = f=1(x').

u



Outline of the Proof - |

y Y

@ There is a uy-link for every y € V(G) \ {u, x}.
Perform a uy-swap: since G and H do not pack, there must be
some conflicting edge, and such a conflict must involve an
H-edge incident to either u or y. In either case, this along with
the conflicting G-edge gives a uy-link in the original multigraph.



Outline of the Proof - |

@ There is a uy-link for every y € V(G) \ {u, x}.
Perform a uy-swap: since G and H do not pack, there must be
some conflicting edge, and such a conflict must involve an
H-edge incident to either u or y. In either case, this along with
the conflicting G-edge gives a uy-link in the original multigraph.



Outline of the Proof - |

@ There is a uy-link for every y € V(G) \ {u, x}.

@ There are two links from u to itself, using the parallel edges
ux in each order. Thus, there are at least n links from wv.



Outline of the Proof - |

@ There are at least n links from u.

@ The number of GH-links from u is at most ) “degy(f(y)).
yeNG(v)
(sum of red-degrees of green neighbors of u)

@ The number of HG-links from u is at most
> degg(f~(2')).
Z'ENH(U’)
(sum of green-degrees of red neighbors of u)



Outline of the Proof - |

n

< # links from u

A(G) ¢
< > d™ 43 d'9, by the choice of v/
i=1 j=1

Contradiction!



Outline of the Proof - Il

Theorem (K., Reiniger (2020+))

If G is a graph and F is a forest, both on n vertices, and
3A(G) + ¢*(F) < nthen G and F pack unless n is even,
G= QKZ, and F = K1,n71-

@ Now, we suppose that H is a forest, henceforth called F,
and that 3A(G) + (*(F) = n.
We still assume that G and F do not pack, and that F is
edge-minimal with this property.

@ If A(G) =1, then it is easy to show that nis even,
G-= gKg, and F = K17n_1.
So we can assume that A(G) > 1, and seek a
contradiction.



Outline of the Proof - Il

@ In the current setup, U’ is a leaf of F and x’ its neighbor.

n < # links from u
3" degr(f(y)) + degg(x)

yeNg(u)

< Y (dege(f(y)) —2) +2A(G) + A(G)
y€Ng(v)

< Y max{dege(f(y)) — 2,0} +3A(G)
y€ENg(v)

< zn: max{d") — 2,0} + 8A(G) = 3A(G) + £*(F) = n,

so we have equality throughout.



Outline of the Proof - Il

@ Analyzing each of the four equations above, gives us:

Lemma

For any leaf u' of F and x’ its neighbor, and a quasipacking f of
G with F with f(u) = U’ and f(x) = x" and conflicting edge ux,
we have the following.

@ Foreveryy € V(G)\ {u, x}, there is a unique link from u to y;
there is no link from u to x; and there are two links from u to
itself.

degg(x) = degg(u) = A(G).
For every w € Ng(u), degg(f(w))
For every w ¢ Ng(u), degg(f(w))

€000

> 2.
<2



Outline of the Proof - Il

Lemma

For any leaf u' of F and x’ its neighbor, and a quasipacking f of

G with F with f(u) = U’ and f(x) = x" and conflicting edge ux,
we have the following.

Q Nglu] = Nglx].
@ G[Ng|u]] is a clique component.

Use appropriately chosen swap operations and the

previous lemma to show that the structure of quasipacking
looks like:



Outline of the Proof - Il

4 - @
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@ We can show that
o {u,x},A B,C,Na, Ng, Ny is a partition of V(G)
o A, Na, Ng, C are all empty
o Ng[u] = Ng[x] = {u, x} U B forms a clique in G.




Outline of the Proof - Il

@ Let G|Q)] be the cligue component of G given by the
Lemma 2.
Let z be a vertex of Q with smallest F-degree larger than 1
(such a choice is possible by Lemma 1).
Let z1, 2o € V(G) be two F-neighbors of z.



Outline of the Proof - Il

Let G[Q)] be the clique component of G given by the Lemma 2.
Let z be a vertex of Q with smallest F-degree larger than 1
(such a choice is possible by Lemma 1).

Let z1, 2z € V(G) be two F-neighbors of z.

We can show that QU {z{, zo} \ {u, z} is F-independent.
Let X = f(QU{z1, 22} \ {u, z}).

Let g : V(G) — V(F) be a bijection such that g(Q) = X.
Since G[Q] is a cligue component and X is independent,

g is a packing if and only if g|g_q is a packing of G— Q
with F — X.

Since G and F do not pack, we must have that G— Qand F — X
do not pack.

We get a contradiction by showing that G— Q and F — X
pack.



Thank You!
Questions?



Thank You!
Questions?

Conjecture (Erd6s-Sos (1962))

Let G be a graph of order n and T be a tree of size k.
Ife(G) < $n(n— k) then T and G pack.

Conjecture (Bollobas-Eldridge (1978), & Catlin (1976))
If(Ay+1)(A2+ 1) < n+1 then Gy and G, pack.

@ Characterize all extremal graphs of:
Theorem (K., Reiniger (2020+))

Let G be a graph and H a c-degenerate graph, both on n vertices.
Let d1(G) > dZ(G) > ... > d\9 be the degree sequence of G, and
similarly for H.

N ) & @
If > o™+ > d™ <n,then G and H pack.
=1 j=1



