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A Puzzle
Can you fill in the numbers 1,2, . . . ,17 in the 17 circles below without
repetition so that no two consecutive numbers are placed in circles
with a line segment joining them?



Graph Packing

G1 = (V1,E1) and G2 = (V1,E1), two n-vertex graphs are
said to pack if there exist injective mappings of the vertex
sets into [n],
Vi → [n] = {1,2, . . . ,n}, i = 1,2,
such that the images of the edge sets do not intersect.
Equivalently, there exists a bijection V1 ↔ V2 such that
e ∈ E1 ⇒ e 6∈ E2.
G1 is a subgraph of G2, the complement of G2.

This definition is easily generalizable to more than two
graphs, or to hypergraphs, etc.
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G1 is a subgraph of G2, the complement of G2.

This definition is easily generalizable to more than two
graphs, or to hypergraphs, etc.



Examples & Non-Examples



Examples & Non-Examples



Examples & Non-Examples



Examples & Non-Examples



A Common Generalization

Hamiltonian Cycle in graph G : Whether the n-cycle Cn
packs with G.
The independence number α(G) of an n-vertex graph G is
at least k if and only if G packs with Kk + Kn−k .
Proper k -coloring of n-vertex graph G : Whether G packs
with an n-vertex graph that is the union of k cliques.
Equitable k -coloring of n-vertex graph G : Whether G
packs with complement of the Turán Graph T (n, k).
Turán-type problems : Every graph with more than
ex(n,H) edges must pack with H.
Ramsey-type problems.
“most” problems in Graph Theory.
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In subgraph problems, (usually) at least one of the two
graphs is fixed.
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(n
2

)
, then G1 and G2 pack.



A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Theorem
If e(G1)e(G2) <

(n
2

)
, then G1 and G2 pack.

Proof. Pick a random bijection between V (G1) and V (G2),
uniformly among the set of all n! such bijections.

Sharp for G1 = S2m, star of order 2m, and G2 = mK2,
matching of size m, where n = 2m.



A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Theorem (Bollobás, Eldridge (1978), & Teo, Yap (1990))

If ∆1, ∆2 < n− 1, and e(G1) + e(G2) ≤ 2n− 2, then G1 and G2
do not pack if and only if they are one of the thirteen specified
pairs of graphs.



A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If e(G) < 1

2n(n − k) then T and G pack.



A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If e(G) < 1

2n(n − k) then T and G pack.

Each graph with more than 1
2 n(k − 1) edges contains every tree

of size k .
This says average degree k guarantees every tree of size k .
The corresponding minimum degree result is easy.



A Distinction

In packing problems, each member of a ‘large’ family of
graphs contains each member of another ‘large’ family of
graphs.

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If e(G) < 1

2n(n − k) then T and G pack.

Sharp, if true. Take disjoint copies of k -cliques.
Known only for special classes of trees, etc.



Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976))
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If δ(G) > kn−1
k+1 , then

G contains all graphs with maximum degree at most k .
If true, this conjecture would be sharp:
∆2K∆1+1 + K∆1−1 and ∆1K∆2+1 + K∆2−1



Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976))
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

If true, this conjecture would be a considerable extension of

Theorem (Hajnal-Szemerédi (1971))
Every graph G has an equitable k-coloring for k ≥ ∆(G) + 1.

Equitable colorings of graphs have been used to
extend Chernoff-Hoeffding concentration bounds to
dependent random variables (Pemmaraju, 2003)
extend Arnold-Groeneveld order statistics bounds to
dependent random variables (Kaul, Jacobson, 2006)



Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976))
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

The conjecture has only been proved when

∆1 ≤ 2 [Aigner, Brandt (1993), and Alon, Fischer (1996)],

∆1 = 3 and n is huge [Csaba, Shokoufandeh, Szemerédi (2003)].

Near-packing of degree 1 [Eaton (2000)].

G1 d-degenerate, max{40∆1 log ∆2,40d∆2} < n
[Bollobás, Kostochka, Nakprasit (2008)].

G1 contains no K2,t and ∆1 > 17t∆2 [van Batenburg, Kang (2019)].



Bollobás-Eldridge-Catlin Conjecture

Conjecture (Bollobás, Eldridge (1978), & Catlin (1976))
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

Theorem (Kaul, Kostochka, Yu (2008))
For ∆1, ∆2 ≥ 300 ,
If (∆1 + 1)(∆2 + 1) ≤ (0.6)n + 1, then G1 and G2 pack.

Theorem (Sauer & Spencer (1978))
If ∆1∆2 < (0.5)n , then G1 and G2 pack.



Classic Results on Graph Packing

Theorem (Sauer & Spencer (1978))
If 2∆1∆2 < n , then G1 and G2 pack.



Classic Results on Graph Packing

Theorem (Sauer & Spencer (1978))
If 2∆1∆2 < n , then G1 and G2 pack.

Sharp: G1 = n
2K2. G2 ⊇ K n

2 +1, or G2 = K n
2 ,

n
2

with n
2 odd.



Classic Results on Graph Packing

Characterization of the extremal graphs for the
Sauer-Spencer Theorem.

Theorem (Kaul, Kostochka (2007))
If 2∆1∆2 ≤ n , then
G1 and G2 do not pack if and only if
one of G1 and G2 is a perfect matching and the other either is
K n

2 ,
n
2

with n
2 odd or contains K n

2 +1.



Classic Results on Graph Packing

Theorem (Brandt (1994))
If G is a graph and T is a tree with `(T ) leaves, both on n
vertices, and 3∆(G) + `(T )− 2 < n then G and T pack.

A partial step towards the Erdős-Sós conjecture: a graph
G contains every tree T with `(T ) ≤ 3δ(G)− 2n + 4.



Classic Results on Graph Packing

Theorem (Brandt (1994))
If G is a graph and T is a tree with `(T ) leaves, both on n
vertices, and 3∆(G) + `(T )− 2 < n then G and T pack.

Characterization of extremal graphs?



Extremal Graphs for Brandt

Theorem (Brandt (1994))
If G is a graph and T is a tree with `(T ) leaves, both on n vertices,
and 3∆(G) + `(T )− 2 < n then G and T pack.

Characterization of extremal graphs of Brandt.

Theorem (K., Reiniger (2020+))
If G is a graph and F is a forest, both on n vertices, and
3∆(G) + `∗(F ) ≤ n then G and F pack unless n is even,
G = n

2K2, and F = K1,n−1.

`∗(F ) = `(F )− 2 comp(F ), where comp(F ) denotes the number
of non-trivial components of F .

`∗(F ) represents the number of “excess leaves” compared to a
linear forest.

For a tree T , `∗(T ) = `(T )− 2.
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A Generalization of Sauer-Spencer & Brandt

Recall, a graph G is c-degenerate if every subgraph of it
has a vertex of degree at most c.
It is a measure of sparseness of a graph and equivalent to
core number, or coloring number.



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices.
Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence of G, and
similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.
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This strengthens Sauer-Spencer, since c ≤ ∆(H).



A Generalization of Sauer-Spencer & Brandt

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices.
Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence of G, and
similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.

This also strengthens Brandt’s theorem:
if H is a tree, then c = 1, so the second summation is just
∆(G). For the first summation,

∆(G)∑
i=1

d (H)
i = 2∆(G) +

∆(G)∑
i=1

(
d (H)

i − 2
)
≤ 2∆(G) + `(H)− 2.



A Generalization of Sauer-Spencer & Brandt
Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices.
Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence of G, and
similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.

This Theorem retains all the Sauer-Spencer extremal graphs:
H = n

2 K2 and G ⊇ Kn/2+1
H = n

2 K2 and G = Kn/2,n/2, with n/2 odd
H ⊇ Kn/2+1 and G = n

2 K2
H = Kn/2,n/2 and G = n

2 K2, with n/2 odd
And it has an additional family of extremal graphs:

H = Ks,n−s and G = n
2 K2, with s odd

(in particular, H = K1,n−1 and G = n
2 K2)

We do not know whether these are all the extremal graphs.



A Packing Puzzle

Can you fill in the numbers 1,2, . . . ,17 in the 17 circles below
without repetition so that no two consecutive numbers are
placed in circles with a line segment joining them?
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A Packing Puzzle

Can you pack P17 with this given graph?

Dirac (If ∆(G) ≤ n/2− 1, then G packs with Cn) fails to
apply.



A Packing Puzzle

Can you pack P17 with this given graph?

Sauer-Spencer (and its extension) fails to apply.



A Packing Puzzle

Can you pack P17 with this given graph?

Bollobas-Eldridge-Catlin (if its true) fails to apply.



A Packing Puzzle

Can you pack P17 with this given graph?

Yes! By our result (G = P17, H be the given graph which is
2-degenerate, so c = 2.)



Some Proof Ideas

Structural Analysis of a (hypothetical) minimal
counterexample.
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multigraph with vertices V (G) and edges labelled by
G (green) or H (red).
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Some Proof Ideas

Think of a bijective mapping f : V (G)→ V (H) as the
multigraph with vertices V (G) and edges labelled by
G (green) or H (red).

A link is a copy of P3 with one G-edge and one H-edge,
that is a green-red (or red-green) path.
We will also say: uv -link, GH-link, etc.



Some Proof Ideas

From a given mapping f , a uv -swap results in a new
mapping f ′ with f ′(u) = f (v), f ′(v) = f (u), and f ′ = f
otherwise.
That is, u and v exchange their green-neighbors.



Some Proof Ideas
From a given mapping f , a uv -swap results in a new
mapping f ′ with f ′(u) = f (v), f ′(v) = f (u), and f ′ = f
otherwise.
That is, u and v exchange their green-neighbors.



Some Proof Ideas

A quasipacking of G with H is a bijective mapping f whose
multigraph is simple except for a single pair of vertices
joined by both an G-edge and a H-edge (the conflicting
edge).



Outline of the Proof - I

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices. Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence
of G, and similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.
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Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n
vertices. Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence
of G, and similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.

Consider a pair of graphs (G,H) satisfying the given
condition, with H being c-degenerate, each on n vertices,
that do not pack; furthermore assume that H is
edge-minimal with this property.
Thus for any edge e in H, G and H − e pack, and so there
is a quasipacking of H and G with conflicting edge e.



Outline of the Proof - I

Consider a pair of graphs (G,H) satisfying the given
condition, with H being c-degenerate, each on n vertices,
that do not pack; furthermore assume that H is
edge-minimal with this property.
Thus for any edge e in H, G and H − e pack, and so there
is a quasipacking of H and G with conflicting edge e.

Let u′ be a vertex of minimum positive degree in H, let
x ′ ∈ NH(u′), and consider a quasipacking f of G with H
with conflicting edge u′x ′. Let u = f−1(u′) and x = f−1(x ′).



Outline of the Proof - I

Let u′ be a vertex of minimum positive degree in H, let
x ′ ∈ NH(u′), and consider a quasipacking f of G with H
with conflicting edge u′x ′. Let u = f−1(u′) and x = f−1(x ′).



Outline of the Proof - I

There is a uy -link for every y ∈ V (G) \ {u, x}.
Perform a uy -swap: since G and H do not pack, there must be
some conflicting edge, and such a conflict must involve an
H-edge incident to either u or y . In either case, this along with
the conflicting G-edge gives a uy -link in the original multigraph.



Outline of the Proof - I

There is a uy -link for every y ∈ V (G) \ {u, x}.
Perform a uy -swap: since G and H do not pack, there must be
some conflicting edge, and such a conflict must involve an
H-edge incident to either u or y . In either case, this along with
the conflicting G-edge gives a uy -link in the original multigraph.



Outline of the Proof - I

There is a uy -link for every y ∈ V (G) \ {u, x}.

There are two links from u to itself, using the parallel edges
ux in each order. Thus, there are at least n links from u.



Outline of the Proof - I

There are at least n links from u.

The number of GH-links from u is at most
∑

y∈NG(u)

degH(f (y)).

(sum of red-degrees of green neighbors of u)

The number of HG-links from u is at most ∑
z′∈NH (u′)

degG(f−1(z ′)).

(sum of green-degrees of red neighbors of u)



Outline of the Proof - I

n

≤ # links from u

≤
∑

y∈NG(u)

degH(f (y)) +
∑

z′∈NH (u′)

degG(f−1(z ′))

≤
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j , by the choice of u′

Contradiction!



Outline of the Proof - II

Theorem (K., Reiniger (2020+))
If G is a graph and F is a forest, both on n vertices, and
3∆(G) + `∗(F ) ≤ n then G and F pack unless n is even,
G = n

2K2, and F = K1,n−1.

Now, we suppose that H is a forest, henceforth called F ,
and that 3∆(G) + `∗(F ) = n.
We still assume that G and F do not pack, and that F is
edge-minimal with this property.

If ∆(G) = 1, then it is easy to show that n is even,
G = n

2K2, and F = K1,n−1.
So we can assume that ∆(G) > 1, and seek a
contradiction.



Outline of the Proof - II

In the current setup, u′ is a leaf of F and x ′ its neighbor.

n ≤ # links from u

≤
∑

y∈NG(u)

degF (f (y)) + degG(x) (1)

≤
∑

y∈NG(u)

(
degF (f (y))− 2

)
+ 2∆(G) + ∆(G) (2)

≤
∑

y∈NG(u)

max{degF (f (y))− 2,0}+ 3∆(G) (3)

≤
n∑

i=1

max{d (F )
i − 2,0}+ 3∆(G) = 3∆(G) + `∗(F ) = n, (4)

so we have equality throughout.



Outline of the Proof - II

Analyzing each of the four equations above, gives us:

Lemma
For any leaf u′ of F and x ′ its neighbor, and a quasipacking f of
G with F with f (u) = u′ and f (x) = x ′ and conflicting edge ux,
we have the following.

1 For every y ∈ V (G) \ {u, x}, there is a unique link from u to y;
there is no link from u to x; and there are two links from u to
itself.

2 degG(x) = degG(u) = ∆(G).
3 For every w ∈ NG(u), degF (f (w)) ≥ 2.
4 For every w /∈ NG(u), degF (f (w)) ≤ 2.



Outline of the Proof - II

Lemma
For any leaf u′ of F and x ′ its neighbor, and a quasipacking f of
G with F with f (u) = u′ and f (x) = x ′ and conflicting edge ux,
we have the following.

1 NG[u] = NG[x ].
2 G[NG[u]] is a clique component.

Use appropriately chosen swap operations and the
previous lemma to show that the structure of quasipacking
looks like:



Outline of the Proof - II

We can show that
{u, x},A,B,C,NA,NB,Nx is a partition of V (G)
A, NA, NC , C are all empty
NG[u] = NG[x ] = {u, x} ∪ B forms a clique in G.



Outline of the Proof - II

Let G[Q] be the clique component of G given by the
Lemma 2.
Let z be a vertex of Q with smallest F -degree larger than 1
(such a choice is possible by Lemma 1).
Let z1, z2 ∈ V (G) be two F -neighbors of z.



Outline of the Proof - II

Let G[Q] be the clique component of G given by the Lemma 2.
Let z be a vertex of Q with smallest F -degree larger than 1
(such a choice is possible by Lemma 1).
Let z1, z2 ∈ V (G) be two F -neighbors of z.

We can show that Q ∪ {z1, z2} \ {u, z} is F -independent.
Let X = f (Q ∪ {z1, z2} \ {u, z}).
Let g : V (G)→ V (F ) be a bijection such that g(Q) = X .
Since G[Q] is a clique component and X is independent,
g is a packing if and only if g|G−Q is a packing of G −Q
with F − X .
Since G and F do not pack, we must have that G−Q and F − X
do not pack.
We get a contradiction by showing that G −Q and F − X
pack.



Thank You!
Questions?

Conjecture (Erdős-Sós (1962))
Let G be a graph of order n and T be a tree of size k.
If e(G) < 1

2 n(n − k) then T and G pack.

Conjecture (Bollobás-Eldridge (1978), & Catlin (1976))
If (∆1 + 1)(∆2 + 1) ≤ n + 1 then G1 and G2 pack.

Characterize all extremal graphs of:

Theorem (K., Reiniger (2020+))
Let G be a graph and H a c-degenerate graph, both on n vertices.
Let d (G)

1 ≥ d (G)
2 ≥ · · · ≥ d (G)

n be the degree sequence of G, and
similarly for H.

If
∆(G)∑
i=1

d (H)
i +

c∑
j=1

d (G)
j < n, then G and H pack.
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If
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