
Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Finding Large Induced Subgraphs

Hemanshu Kaul

Illinois Institute of Technology

www.math.iit.edu/∼kaul

kaul@iit.edu

Joint work with

S. Kapoor (IIT)

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Largest Induced Subgraph

Given a graph G, find the largest induced subgraph of G.

Ah!

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Largest Induced Subgraph

Given a graph G, find the densest induced subgraph of G.

Goldberg, 1984: Polynomial-time algorithm based on network
flows.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Densest k -Subgraph Problem

Given a graph G, find the largest induced subgraph of G on
k-vertices.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Densest k -Subgraph Problem

Given a graph G, find the largest induced subgraph of G on
k-vertices.

NP-hard even on Chordal graphs (Corneil, Perl, 1984), on
Planar graphs (Keil, Brecht, 1991)

n/k-approximation algorithm using semi-definite
programming (Goemans, 2001)

n1/3-approximation algorithm (Feige, Kortsarz, Peleg,
2001)

n1/4-approximation algorithm (Bhaskar et al., 2010)

No PTAS in general under a complexity assumption (Khot,
2004)

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Approximation Algorithms

Algorithm A for a maximization problem MAX achieves an
approximation factor α if

for all inputs G, we have: OPT (G)
A(G) ≤ α,

where A(G) is the value of the output generated by the
algorithm A,
and OPT (G) is the optimal value.

A α-approximation algorithm for MAX is a polynomial time
algorithm that achieves the approximation factor α.

PTAS (Polynomial Time Approximation Scheme) has α = 1 + ǫ.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

An Extremal Problem

Given graph on n vertices and m edges, what can be said
about the maximum number of edges in an induced subgraph
on k vertices within any such graph?.

f (n,m, k) = min {g(G; k) | ∀G on n vertices and m edges}
where
g(G; k) = max{|E(H)| | H k-vertex induced subgraph of G}
Studied since 1970s,
Chung-Erdős-Spencer (1985) gave a complete description of f
when k = o(n), e.g.,

f (n,m, k) = Θ(k2m/n2) when k > (n2 log n)/m

f (n,m, k) = Θ(k log n/ log(n2/km))
when k < (n2/m) log n log log n

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Largest Induced Subgraph with Weights

We are interested in a weighted version of the densest
k-subgraph problem.

Given a graph G with cost associated with each of its vertices,
and benefit associated with each of its edges and vertices.

Find the induced subgraph whose cost does not exceed a given
budget while its total benefit is maximized.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

Graph Knapsack Problem: Given an instance GKP(G,b,w ,W),
where G = (V ,E) is an undirected graph with n vertices,
w : V → Z

+ is a weight function, b : E ∪ V → Z is a benefit
function on vertices and edges, and W is a weight bound.

maximize b(G[S])
such that
weight(S) ≤ W

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

For a graph G defined on V , the benefit of a subgraph
H = (VH ,EH) is

b(H) =
∑

v∈VH
b(v) +

∑

e∈EH
b(e)

while its weight is

w(H) =
∑

v∈VH
w(v).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

Given a subset of vertices S, we consider the subgraph
induced by S, termed G[S].

The Graph Knapsack Problem (GKP) asks for a subset of
vertices, S ⊆ V so as to maximize the benefit of the induced
subgraph, b(G[S]) with the budget restriction that its weight
w(G[S]) is less than W .

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

Relationship to Large Subgraph Problems

GKP is related to the maximum clique problem. We can reduce
the clique problem to the graph-knapsack problem.

Given a graph G, suppose we wish to determine if G contains a
clique of size t . We define an instance of GKP on G with
W = t , wi = 1, bi = 0, be = 1 for e ∈ E(G).
Graph G has a Kt iff GKP has benefit at least

(t
2

)

.

We may note that, unless P = NP, achieving an approximation
ratio better than n1−ǫ is impossible for the clique problem.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

Relationship to Large Subgraph Problems

GKP also generalizes the Densest k-Subgraph problem.

This corresponds to GKP with edges of benefit 1 while vertices
have zero benefit, and the weight of each vertex is 1 with
W = k .

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Graph Knapsack Problem

Relationship to Large Subgraph Problems

GKP also generalizes the Densest k-Subgraph problem.

This corresponds to GKP with edges of benefit 1 while vertices
have zero benefit, and the weight of each vertex is 1 with
W = k .

NP-hard even on Chordal graphs (Corneil, Perl, 1984), on
Planar graphs (Keil, Brecht, 1991)

n/k -approximation algorithm using semi-definite programming
(Goemans, 2001)

n1/3-approximation algorithm (Feige, Kortsarz, Peleg, 2001)

n1/4-approximation algorithm (Bhaskar et al., 2010)

No PTAS in general under a complexity assumption (Khot, 2004)

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

Selection of Projects: We want to pick a collection of projects
such that their combined “benefit” is maximized while the total
cost does not exceed the given budget.
Previous Research: Choose projects such that the chosen
projects have largest sum of individual benefits while their total
cost does not exceed the total budget, W . This is simply the
classical 0-1 Knapsack problem.

max
n

∑

i=1

B(i)xi

subject to
∑

i

wixi ≤ W

xi ∈ {0,1}

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

Criticism: We have to choose multiple projects for
implementation simultaneously, which means that such projects
cannot be considered independent of each other. It may
happen that two projects which are individually beneficial, will
together negate or supplement either of their benefits.

The overall benefits of a collection of projects may be greater
than, equal to, or smaller than the sum of individual benefits.

Think of highway projects on a transportation network.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

If we have the computing resources to calculate the benefit of
each possible collection of projects, we could simply pick the
collection with largest value.
However this is not computationally feasible even for small
values of n since there are a total of as many as 2n different
collections.

So we are limited to computation of benefits of collections of up
to r projects at a time, where r is small fixed integer.
Note this only requires calculation of benefits of up to
n + n2 + . . .+ nr different collections of projects.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

We would like to calculate B([t]) = B({1,2, . . . , t}) explicitly but
that may not be possible/ allowed because t > r .
In that case we estimate its value using the computed values of
B(I) where |I| ≤ r as follows:

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

B({1, . . . , t}) =
n
∑

i=1
B({i}) + ∑

I⊆[t] : |I|≤2
∆I +

∑

I⊆[t] : |I|≤3
∆I + . . .+∆[t],

where ∆ values give an Inclusion-Exclusion-formula type
description of the difference between the combined benefit of
the projects and the sum of the lower order benefits,

∆{i ,j} = B({i , j}) − (B({i}) + B({j})),

∆{i ,j ,k} = B({i , j , k}) − (B({i , j}) + B({i , k}) + B({j , k})) +
(B({i}) + B({j}) + B({k})),
and so on.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

When t > r , we estimate the B({1, . . . , t}) by using only the first
r terms in this formula.

Thus we use the information about the dependency between up
to r projects at a time to give a more realistic value of the
benefit of a larger collection of projects.

Lets explicitly illustrate the situation when r = 2.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

Given a set of items V = {v1, ..., vn} (projects) and a knapsack
of limited capacity W (the budget).

To each item we associate a benefit b(vi) (benefit of that
project) and a positive weight wj (cost of that project).

To each pair (r = 2) of items we associate a benefit b(vivj) .
b(e) = b(uv) = B(u, v)− (B(u) + B(v)), difference between
the benefit of the two corresponding projects together and the
sum of individual project benefits.

The benefits on the edges could be positive or negative.
b(e) = 0 corresponds to no interdependency between projects.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

GKP: Resource Allocation under Dependencies

We can formulate the problem as a 0-1 Quadratic Program:

maximize
∑

i
b(vi)xi +

∑

vi vj∈E(G)

b(vivj)xi xj

such that
∑

i w(vi)xi ≤ W
xi ∈ {0,1}

Replacing the term xixj by an integer variable xij ∈ {0,1} and

adding the constraints xij ≤ xi+xj
2 and xij ≥ xi+xj−1

2
provides an integer linear program (ILP) for the problem.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Hypergraph Knapsack Problem

When r > 2, the underlying structure considers r -wise
dependencies, that is it forms a r -uniform hypergraph.

The definitions given above generalize in a straightforward
manner to the Hypergraph Knapsack Problem (HKP).

Let H = (V ,E) be a hypergraph.
For any subset S of vertices in H, let w(S) =

∑

v∈S w(v) and
let b(S) =

∑

v∈S b(v) +
∑

e∈E:e⊆S b(e).

As before HKP asks for a subset of vertices S that maximizes
the benefit with the restriction that its weight is less than W .

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Computational Study

[Z. Li, S. Kapoor, H. Kaul, and E. Veliou, B. Zhou, S. Lee, 2012],
Journal of the Transportation Research Board of the National
Academies.

Ongoing traffic improvement project in the financial district
portion of the Chicago Central Business District (CBD), the
Chicago Loop Area bounded by East Wacker Drive, West
Wacker Drive, North Wacker Drive, South Wacker Drive, West
Roosevelt Road, East Roosevelt Road and South Lakeshore
Drive.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Computational Study

There were a total of 6 projects under consideration.

investment projects proposed for possible implementation during this period.

TABLE Major Investment Projects Proposed for Chicago Loop Area during 2011-2015

Project Name Scope Cost

1 Lower Wacker Drive Congress Parkway to Randolph Street $60M
2 Upper Wacker Drive Congress Parkway to Randolph Street $80M
3 Interchange Congress Parkway and Chicago River $60M
4 Congress Parkway Modernization Wells Street to Michigan Avenue $15M
5 Michigan Avenue Resurfacing Congress Parkway to Roosevelt Road $3M
6 Lake Shore Drive Resurfacing Randolph Street to Roosevelt Road $6M

Total $224M

Considering data availability of candidate projects proposed for
possible implementation in the study area, the analysis period
for the computational study was set from 2011-2015.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Computational Study

million dollars that are equivalent to the total costs of all six projects.

TABLE Benefits, Costs, Benefit-to-Cost ratios, and Best Sub-Collection of Projects

Budget Level
($224M)

Benefits Costs Benefit-to-Cost
Ratio

Best Sub-Collection
of Projects

10% 6,357,902 1,642,568 3.87 4+5+6

20% 6,357,902 1,642,568 3.87 4+5+6

30% 6,357,902 1,642,568 3.87 4+5+6

40% 12,283,083 4,744,517 2.59 156+4

50% 12,283,083 4,744,517 2.59 156+4

60% 12,374,624 5,778,500 2.14 2+456

70% 18,185,954 7,846,466 2.32 156+3+4

80% 18,522,072 8,880,449 2.09 124+5+6

90% 18,522,072 8,880,449 2.09 124+5+6

100% 18,548,533 11,982,398 1.55 14+23+56

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Computational Study

they could not necessarily support truly optimal investment decisions.

FIGURE Comparison of total benefits of project selection with and without project

interdependency considerations.

SUMMARY AND CONCLUSION
Study Summary

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

A
n
n
u
al

 B
en

ef
it

s
o
f

S
el

ec
te

d
 P

ro
je

ct
s

(D
o

ll
ar

s/
Y

ea
r)

Annual Costs of Project Selected for Implementation

Benefits_Original Knapsack Model Benefits_Hypergraph Knapsack Model

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Computational Study

Main observations:

The network-wide benefits with project interdependency
considerations tend to be lower than the corresponding
benefits without interdependency considerations by 38-64
percent.

The network-wide benefits with project interdependency
considerations begin to flatten out when the annualized
budget reach approximately $7.5M. No additional benefits
are generated with higher levels of investment budgets.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Quadratic Knapsack Problem

The Quadratic Knapsack Problem (QKP) is the appropriate
problem for comparison with GKP. They are essentially the
same problem when benefits are non-negative.

maximize
n
∑

i=1

n
∑

j=1
bijxixj

such that
n
∑

i=1
wixi ≤ W

xi ∈ {0,1}

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Quadratic Knapsack Problem

No approximation algorithms or FPTAS are known for the
general QKP. The focus has been on IP-based exact methods.

Rader and Woeginger (2002) developed a FPTAS for the case
when all benefits are non-negative and the underlying graph is
a series-parallel graph.
They also show that when QKP has both negative and
non-negative benefits, it can not have any fixed approximation
unless P = NP.

Note that the Hypergraph Knapsack Problem (HKP) can not be
reduced to the QKP or some version of it.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Generalized Knapsack Problems

Relationship to other Knapsack Problems

The idea of using discrete structures like graphs, digraphs,
posets to generalize the classical knapsack problem by
modeling some sort of dependency among the items is not a
new one.

However all such generalizations of the Knapsack problem
restrict the choice of subset of items that can be picked.
While our model does not restrict the choices directly, instead it
modifies the benefit function so that the benefit on the edge
between a pair of items could act as a penalty (if its negative) or
an inducement (if its positive) towards the choice of those two
items.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Generalized Knapsack Problems

Relationship to other Knapsack Problems

The Knapsack Problem with Conflict Graph is a knapsack
problem where each edge in the underlying conflict graph on
the items introduces the constraint that at most one of those
two items can be chosen.
This can be modeled as the Graphical Knapsack problem by
putting large negative benefit on the edges of the conflict graph
and using that as the underlying graph for GKP.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Generalized Knapsack Problems

Relationship to other Knapsack Problems

The Constrained Knapsack Problem in which dependencies
between items are given by a graph.
In the first version, an item can be selected only if at least one
of its neighbors is also selected.
In the second version, an item can be selected only when all its
neighbors are also selected.
These can also be modeled as GKP.

Also, Precedence-Constrained Knapsack Problem,
Subset-Union Knapsack, etc.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm

Fix an integer t . The greedy algorithm can be defined naturally
as:

1 Initialize S = ∅
2 Pick a subset T of V (G)− S of cardinality at most t such

that its benefit (the sum of the benefits of the vertices and
edges induced by T in S ∪ T) to weight ratio is highest

3 Update S = S ∪ T if weight of S ∪ T satisfies the budget
constraint, and then go to step 2. Otherwise pick
whichever of S or T has larger benefit as the final solution.

When t = 1, the worst case benefit ratio can be made arbitrarily
bad.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm

The difficulty in analyzing this greedy algorithm:

Handling two kinds of “weights”
Each step depends on partial solution from previous steps
in an involved manner due to edges that go across.

Main idea:
An arbitrary instance of GKP with greedy solution A and
optimal solution O defines a new instance of GKP which
has disjoint greedy and optimal solutions with its greedy
solution same as A and benefit of its optimal solution no
worse than b(O).

Apply averaging arguments on this new instance, and use
the disjointness of the two solutions and their relation to
original instance to get the bound on the ratio of original
benefits.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm

S. Kapoor, H. Kaul, 2013+

For any fixed t ≥ 0, the greedy algorithm is a
(8 min(n,W)/t)-factor polynomial time (O(2t+1

(n+1
t+1

)

)-running
time) approximation algorithm for GKP(G,b,w ,W) with n
vertices, when b is a non-negative function.

This analysis is sharp.
We can construct a family of instances of GKP where ratio of
the optimal solution to the greedy solution is Ω(n

t).

No such results are known for Quadratic Knapsack Problem.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm

S. Kapoor, H. Kaul, 2013+

For any fixed t ≥ 0, the greedy algorithm is a
(8 min(n,W) W/t)-factor polynomial time
(O(2t+1

(n+1
t+1

)

)-running time) approximation algorithm for
GKP(G,b,w ,W) with n vertices, when b can take both
negative and non-negative values.

This analysis is sharp.
We can construct a family of instances of GKP where ratio of
the optimal solution to the greedy solution is Ω(n2

t) where
W = Θ(n).

Again, no such results are known for Quadratic Knapsack
Problem.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm

Why the extra factor of W when negative benefits are possible?

When benefits are non-negative, we can show that
w(v) ≤ W/2 for all v which implies that W/w(A) ≤ 2.

When benefits are negative, this ratio can be as bad as
essentially W .

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm for Hypergraph Knapsack

The definition of the greedy algorithm works for Hypergraph
Knapsack problem as well.

However, taking t < r (where r is the largest size of an edge in
the underlying hypergraph) can make the worst case benefit
ratio arbitrarily bad.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm for Hypergraph Knapsack

S. Kapoor, H. Kaul, 2013+

For any fixed t ≥ r , the greedy algorithm is a
(

8
(

min(n,W)
t−r+1

)r−1
)

-factor polynomial time (O(2t
(n

t

)

)-running

time) approximation algorithm for HKP(H,b,w ,W) with n
vertices and r -uniform edges, when b is a non-negative
function.

This analysis is essentially sharp.
We can construct a family of instances of HKP where ratio of
the optimal solution to the greedy solution is Ω((n−r+1)r−1

t r−1).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Greedy Algorithm for Hypergraph Knapsack

S. Kapoor, H. Kaul, 2013+

The greedy algorithm is a
(

2W
(

min(n,W)
t−r+1

)r−1
)

-factor

polynomial time (O(2t
(n

t

)

)-running time) approximation
algorithm for HKP(H,b,w ,W) with n vertices and r -uniform
edges, when b can take both negative and non-negative values.

This analysis is essentially sharp.
We can construct a family of instances of HKP where ratio of
the optimal solution to the greedy solution is Ω((n−r+1)r−1n

t r−1).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

FPTAS for bounded tree-width graphs

S. Kapoor, H. Kaul, 2013+

Let G be a graph with tree-width at most k . Then
GKP(G,b,w ,W) can be approximated to within a factor of

(1 + ǫ) in time O(2k n9 log n
ǫ2).

This result extends to HKP with hypergraph of bounded
tree-width.
Both based on a pseudo-polynomial dynamic programming
algorithm with lots of book-keeping.

Previous result:
[Rader and Woeginger, 2002] FPTAS for QKP when the
underlying graph is series-parallel, which is a family of graphs
with tree-width 2.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Randomized Approximation Algorithm for GKP

S. Kapoor, H. Kaul, 2013+

GKP (with b non-negative) can be approximated within the
factor O(wmax

n
β(n) log2 n) using a randomized polynomial time

algorithm, where W ≥ β(n), and wmax is the maximum weight
of a vertex.

Note that this algorithm works well when W is large (so β(n)
can be made large).
Recall the greedy algorithm, it works well for small values of W .

S. Kapoor, H. Kaul, 2013+

For any fixed t ≥ 0, the greedy algorithm is a
(8 min(n,W)/t)-factor polynomial time approximation algorithm
for GKP.

So, why not combine these two algorithms?
Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Randomized Approximation Algorithm for GKP

A combination of these two algorithms gives:

S. Kapoor, H. Kaul, 2013+

GKP can be approximated to within a factor of
O(wmax

√
n log2+γn) in polynomial time, where γ is an

arbitrary small positive constant.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Randomized Approximation Algorithm for GKP

In fact all these results generalize to a bigger class of
optimization problems that we call
PIQP (Positive Integer Quadratic Program):
For X ∈ Z

n,X = (x1, . . . xn):

max X T BX + bT X

subject to

aT
i X ≤ Wi , i = 1, . . . p

xi ∈ {0,1}

with non-negative integer vectors ai and b, and the n × n
non-negative-integer matrix B.

For our results to hold, number of constraints can be as large
as p ≤ O(lg n).
The approximation factor increases by a factor of p.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Tools for Analysis

Main Tools for the Randomized Algorithm:

Greedy Algorithm

Multidimensional Knapsack Problem

Hyperbolic relaxation of GKP; a Second Order Cone
Program (SOCP)

Chernoff-Hoeffding tail bounds

Kim-Vu polynomial concentration

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Tools for Analysis

We generate 4 solutions and take the best of them:

Solution 1: The Greedy solution.

Solution 2: An edge with maximum benefit.

Solution 3:
Solution 4:
Both these solutions use a SOCP, hyperbolic Program.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Tools for Analysis

Solve the relaxation of the hyperbolic program to get an optimal
solution x∗

u

maximize
∑

uv∈E(G)

b(uv)xuv

such that
∑

u w(u)xu ≤ W
xuxv ≥ x2

uv
0 ≤ xu ≤ 1

Generate a random 0-1 solution Y :
Yu = 1 with probability

√
x∗

u/λ

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Tools for Analysis

Choose a scaling factor λ so that E[w(Y)] ≤ λW

This needs

Lemma

Let W ≥ β(n). Then for each i ,
∑

u ai ,u
√

x∗
u ≤ 2W

√

amaxn/β(n), where amax = max{aij}.

This gives λ = 2
√

amaxn/β(n).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Tools for Analysis

The fourth solution is Z :

First find v ∈ V (G) such that
v = argmaxw

∑

u∈NG(w) buw
√

x∗
u/λ.

For this fixed v , define Zv = 1, Zw = 0 at every vertex,
w 6∈ NG(v) ∪ {v}
Zu for u ∈ NG(v) is determined by solving a “local” 0-1
Knapsack problem with multiple constraints, whose items are
the neighbors of v and benefit of each such item equals the
benefit of the edge incident to it and v .

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

For 0 < α < 1, with P denoting the 0-1 hyperbolic program for
solving QKP, and P∗ its relaxation, we have that

P[F (Y) < (1 − α)OPT (P)/λ2]
≤ P[F (Y) < (1 − α)OPT (P∗)/λ2]

= P[F (Y) < (1 − α)E[F (Y)]]

= P[E[F (Y)]− F (Y) > αE[F (Y)]]

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

For 0 < α < 1, with P denoting the 0-1 hyperbolic program for
solving QKP, and P∗ its relaxation, we have that

P[F (Y) < (1 − α)OPT (P)/λ2]
≤ P[F (Y) < (1 − α)OPT (P∗)/λ2]

= P[F (Y) < (1 − α)E[F (Y)]]

= P[E[F (Y)]− F (Y) > αE[F (Y)]]

If we can show that this probability is small, then that would
prove that F (Y), the value of the solution Y is within a factor
λ2/(1 − α) of the optimal (as long as the budget constraints are
satisfied).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

Define
ε0 = E[b(Y)], i.e., OPT (HP∗)/λ, a measure of global solution.

ε1 = maxv (
∑

u∈N(v) P[Yu = 1]), a measure of dense local
neighborhood solution.

ε2 = maxuv∈E(G) b(uv), a measure of most beneficial edge.

J-H. Kim, Van Vu, 2001

P[E[Y]− Y > t2] < 2e2 exp
(

−t/32(2εε′)1/4 + log n
)

where ε = max{ε0, ε1, ε2}, and ε′ = max{ε1, ε2}.

This applies to any non-linear random variable of the form:
Y =

∑

e∈E(G)

be
∏

v∈e
yv where G is an underlying graph, b is

non-negative weight function on the edges, and yv are independent
0 − 1 random variables.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

When ε2 > ε1 and ε0 < ε2 log4 n, max buv works as a good
solution

When ε2 > ε1 and ε0 > ε2 log4 n, Kim-Vu applies to Y , the
randomized solution

When ε1 > ε2 and ε0 > ε1 log4 n, Kim-Vu applies to Y , the
randomized solution

When ε1 > ε2 and ε0 < ε1 log4 n, Z , solution 4 is used,
which is shown to be concentrated via Chernoff-Hoeffding.

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

Finally, the solution is shown to exceed the budget W with
probability o(n) using Chernoff-Hoeffding, so that

If we repeat the randomized algorithm k = O(nc) times this
probability becomes e−(δ2k/6

√
n).

Hemanshu Kaul

Introduction Resource Allocation Greedy Algo FPTAS Randomized Algo

Analysis of Solutions

Finally, the solution is shown to exceed the budget W with
probability o(n) using Chernoff-Hoeffding, so that

If we repeat the randomized algorithm k = O(nc) times this
probability becomes e−(δ2k/6

√
n).

S. Kapoor, H. Kaul, 2013+

PIQP, with mini Wi ≥ β(n) and p ≤ O(lg n), can be
approximated within the factor O(wmax p n

β(n) log2 n) using a
randomized polynomial-time algorithm, where amax is the
maximum entry in the constraint matrix A, .

Hemanshu Kaul

	Introduction
	Resource Allocation
	Greedy Algo
	FPTAS
	Randomized Algo

