Graph Packing – Conjectures and Results

Hemanshu Kaul

hkaul@math.uiuc.edu

www.math.uiuc.edu/~hkaul/ .

University of Illinois at Urbana-Champaign
A graph G is a tuple $(V(G), E(G))$, where $V(G)$ is a set of elements called vertices, and $E(G)$ is a collection of sets, each consisting of two elements of $V(G)$, called edges.

Graphs represent (symmetric) binary relations on an underlying set.

Notation: Some basic parameters

- Order of G, $n(G) = |V(G)|$, the number of vertices in G.
- Size of G, $e(G) = |E(G)|$, the number of edges in G.
Graph Theoretic Notation

Notation: Elementary families of graphs

- \(K_n \), complete graph or clique.
 - \(n \) vertices, and all \(\binom{n}{2} \) edges present.

- \(K_{m,n} \), complete bipartite graph or biclique.
 - \(V(G) = V_1 \sqcup V_2 \), with \(|V_1| = m \), \(|V_2| = n \). No edges within \(V_1 \) or \(V_2 \), and all \(mn \) edges between \(V_1 \) and \(V_2 \).

- \(mK_2 \), perfect matching. \(m \) disjoint edges.
Notation: Another basic parameter

- Maximum degree of G, $\Delta(G)$, the maximum number of edges incident to any vertex of G.
 - $\Delta(K_n) = n - 1$
 - $\Delta(K_{m,n}) = \max\{m, n\}$
 - $\Delta(mK_2) = 1$

- Minimum degree of G, $\delta(G)$, the minimum number of edges incident to any vertex of G.
Let $G_i = (V_i, E_i)$ be graphs of order at most n, with maximum degree Δ_i, $i = 1, \ldots, k$.
Let $G_i = (V_i, E_i)$ be graphs of order at most n, with maximum degree Δ_i, $i = 1, \ldots, k$.

G_1, \ldots, G_k are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, \ldots, k$ such that the images of the edge sets do not intersect.
Let $G_i = (V_i, E_i)$ be graphs of order at most n, with maximum degree Δ_i, $i = 1, \ldots, k$.

G_1, \ldots, G_k are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, \ldots, k$ such that the images of the edge sets do not intersect.

We may assume $|V_i| = n$ by adding isolated vertices.
Let $G_i = (V_i, E_i)$ be graphs of order at most n, with maximum degree Δ_i, $i = 1, \ldots, k$.

G_1, \ldots, G_k are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, \ldots, k$ such that the images of the edge sets do not intersect.

Understanding how to pack two graphs ($k = 2$) is typically the most crucial case.
Introduction

Let $G_i = (V_i, E_i)$ be graphs of order at most n, with maximum degree Δ_i, $i = 1, \ldots, k$.

G_1, \ldots, G_k are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, \ldots, k$ such that the images of the edge sets do not intersect.

G_1, G_2 are said to pack if

- there exists a bijection $V_1 \leftrightarrow V_2$ such that $e \in E_1 \Rightarrow e \not\in E_2$.
- G_1 is a subgraph of $\overline{G_2}$.
Examples and Non-Examples

C₅

C₅
Examples and Non-Examples

C_5

C_5

Packing
Examples and Non-Examples

C₅

C₅

Packing

K₄,₄

4 K₂
Examples and Non-Examples

C₅

C₅

Packing

K₄,₄

4 K₂

Packing
Examples and Non-Examples

K₃,₃

3 K₂
Examples and Non-Examples

$K_{3,3}$

$3 \cdot K_2$

No Packing
Examples and Non-Examples

\[K_{3,3} \]

\[2 \text{ } K_2 \]

\[3 \text{ } K_2 \]

\[\text{No Packing} \]

\[K_3 \]
Examples and Non-Examples

$K_{3,3}$

$3K_2$

$2K_2$

K_3

No Packing

No Packing

Graph Packing – p.5/26
Hamiltonian Cycle in graph G : A cycle through all the vertices in G.
Whether the n-cycle C_n packs with \overline{G}.
A Common Generalization

- Existence of a subgraph H in G: H is a subgraph of G. Whether H packs with \bar{G}.
A Common Generalization

- **Existence of a subgraph \(H \) in \(G \):** \(H \) is a subgraph of \(G \). Whether \(H \) packs with \(\overline{G} \).

- **Equitable \(k \)-coloring of graph \(G \):** A proper \(k \)-coloring of \(G \) such that sizes of all color classes differ by at most 1. A partition of \(V(G) \) into \(k \) classes of cardinality \(\lfloor \frac{n}{k} \rfloor \) or \(\lceil \frac{n}{k} \rceil \), s.t. there is no edge between two vertices in the same class. Whether \(G \) packs with \(k \) cliques of order \(n/k \).
A Common Generalization

- **Existence of a subgraph** H in G: H is a subgraph of G. Whether H packs with \overline{G}.

- **Equitable k-coloring of graph** G: A proper k-coloring of G such that sizes of all color classes differ by at most 1. A partition of $V(G)$ into k classes of cardinality $\lfloor \frac{n}{k} \rfloor$ or $\lceil \frac{n}{k} \rceil$, s.t. there is no edge between two vertices in the same class. Whether G packs with k cliques of order n/k.

- **Turán-type problems**: $ex(n, H) =$ Maximum size of any n-vertex graph not containing H as a subgraph. Every graph with at least $ex(n, H)$ edges packs with \overline{H}.
A Common Generalization

- **Existence of a subgraph** H in G: H is a subgraph of G. Whether H packs with \overline{G}.

- **Equitable k-coloring of graph** G: A proper k-coloring of G such that sizes of all color classes differ by at most 1. A partition of $V(G)$ into k classes of cardinality $\left\lfloor \frac{n}{k} \right\rfloor$ or $\left\lceil \frac{n}{k} \right\rceil$, s.t. there is no edge between two vertices in the same class. Whether G packs with k cliques of order n/k.

- **Turán-type problems**: $ex(n, H) =$ Maximum size of any n-vertex graph not containing H as a subgraph. Every graph with at least $ex(n, H)$ edges packs with \overline{H}.

- **Ramsey-type problems**.
A Common Generalization

- **Existence of a subgraph** \(H \) in \(G \) : \(H \) is a subgraph of \(G \). Whether \(H \) packs with \(\overline{G} \).

- **Equitable \(k \)-coloring of graph** \(G \) : A proper \(k \)-coloring of \(G \) such that sizes of all color classes differ by at most 1. A partition of \(V(G) \) into \(k \) classes of cardinality \(\lfloor \frac{n}{k} \rfloor \) or \(\lceil \frac{n}{k} \rceil \), s.t. there is no edge between two vertices in the same class. Whether \(G \) packs with \(k \) cliques of order \(n/k \).

- **Turán-type problems** : \(ex(n, H) = \) Maximum size of any \(n \)-vertex graph not containing \(H \) as a subgraph. Every graph with at least \(ex(n, H) \) edges packs with \(\overline{H} \).

- **Ramsey-type problems**.

- **“most” problems in Extremal Graph Theory**.
In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.
In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.
In **packing problems**, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.
Some Examples

In **packing problems**, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

Erdős-Sos Conjecture (1963):
Let G be a graph of order n and T be a tree of size k. If $e(G) < \frac{1}{2}n(n - k)$ then T and G pack.

Each graph with at least $\frac{1}{2}n(k - 1)$ edges contains every tree of size k.

Sharp, if true. Take disjoint copies of k-cliques.

Known only for special classes of trees, graphs of large girth, etc.
In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

Theorem: If $e(G_1)e(G_2) < \binom{n}{2}$, then G_1 and G_2 pack.

Proof. Pick a random bijection between $V(G_1)$ and $V(G_2)$, uniformly among the set of all $n!$ such bijections. Now, show the probability that this (random) bijection does not give a packing of G_1 and G_2 is < 1.
Some Examples

In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

Theorem: If \(e(G_1) < n - 1 \) and \(e(G_2) < n - 1 \), then \(G_1 \) and \(G_2 \) pack.

Note that a tree on \(n \) vertices contains exactly \(n - 1 \) edges.
In **packing problems**, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

Theorem: If $e(G_1) < n - 1$ and $e(G_2) < n - 1$, then G_1 and G_2 pack.

Theorem [Bollobas + Eldridge, 1978, & Teo + Yap, 1990]: If $\Delta_1, \Delta_2 < n - 1$, and $e(G_1) + e(G_2) \leq 2n - 2$, then G_1 and G_2 do not pack if and only if they are one of the finitely many specified pairs of graphs.
Gyárfás Tree Packing Conjecture (1976):
Let T_i denote a tree of order i.
Then, any trees T_2, \ldots, T_n can be packed.

In fact, this gives a decomposition of K_n into any T_2, \ldots, T_n.

Known only for special classes of trees, shorter sequences of trees, etc.
Sauer and Spencer’s Packing Theorem

Theorem [Sauer + Spencer, 1978]:
If $2\Delta_1 \Delta_2 < n$, then G_1 and G_2 pack.
Theorem [Sauer + Spencer, 1978]:
If $2\Delta_1 \Delta_2 < n$, then G_1 and G_2 pack.

If $\delta(G) > \frac{(2k-1)(n-1)+1}{2k}$, then G contains all graphs with maximum degree at most k.
Theorem [Sauer + Spencer, 1978]:
If \(2\Delta_1\Delta_2 < n\), then \(G_1\) and \(G_2\) pack.

This is sharp.

For \(n\) even.

\(G_1 = \frac{n}{2}K_2\), a perfect matching on \(n\) vertices.

\(G_2 \supseteq K_{\frac{n}{2}+1}\), or

\(G_2 = K_{\frac{n}{2}, \frac{n}{2}}\) with \(\frac{n}{2}\) odd.

Then, \(2\Delta_1\Delta_2 = n\), and \(G_1\) and \(G_2\) do not pack.
Sauer and Spencer’s Packing Theorem

\[G_1 = K_{\frac{n}{2}, \frac{n}{2}} \text{ with } \frac{n}{2} \text{ odd} \]

\[G_2 = \frac{n}{2} K_2 \]

\[G_1 = \frac{n}{2} K_2 \]

\[G_2 \supseteq K_{\frac{n}{2}+1} \]

\[K_{3,3} \]

\[3 K_2 \]

No Packing

\[2 K_2 \]

\[K_3 \]

No Packing
Theorem 1 [Kaul + Kostochka, 2005]:
If $2\Delta_1 \Delta_2 \leq n$, then G_1 and G_2 do not pack if and only if one of G_1 and G_2 is a perfect matching and the other either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

This result characterizes the extremal graphs for the Sauer-Špencer Theorem.

To appear in *Combinatorics, Probability and Computing*.
Theorem 1 [Kaul + Kostochka, 2005]:
If $\Delta_1 \Delta_2 \leq \frac{1}{2}n$, then
G_1 and G_2 do not pack if and only if
one of G_1 and G_2 is a perfect matching and the other
either is $K_{n/2, n/2}$ with $n/2$ odd or contains $K_{n/2+1}$.
Theorem 1 [Kaul + Kostochka, 2005]:
If $\Delta_1 \Delta_2 \leq \frac{1}{2} n$, then
G_1 and G_2 do not pack if and only if
one of G_1 and G_2 is a perfect matching and the other
either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

$\Delta_1 \Delta_2 \leq \frac{1}{2} n$ is sharp exactly when one of Δ_1, Δ_2 is small.

Can we improve the bound on $\Delta_1 \Delta_2$, if both Δ_1 and Δ_2 are large?
Theorem 1 [Kaul + Kostochka, 2005]:
If $\Delta_1 \Delta_2 \leq \frac{1}{2} n$, then
G_1 and G_2 do not pack if and only if
one of G_1 and G_2 is a perfect matching and the other
either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Bollobás-Eldridge Graph Packing Conjecture:
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1$ then G_1 and G_2 pack.

Theorem 1 can be thought of as a small step towards
this longstanding conjecture.
Bollobás-Eldridge Graph Packing Conjecture [1978]:
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.
Bollobás-Eldridge Graph Packing Conjecture [1978] :
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.

If \(\delta(G) > \frac{kn-1}{k+1}\), then
\(G\) contains all graphs with maximum degree at most \(k\).
Bollobás-Eldridge Graph Packing Conjecture [1978]:
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.

If true, this conjecture would be sharp.

\[n = (d_1 + 1)(d_2 + 1) - 2, \quad \Delta_1 = d_1, \quad \Delta_2 = d_2. \]
Bollobás-Eldridge Graph Packing Conjecture [1978]:
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.

If true, this conjecture would be a considerable extension of the Hajnal-Szemerédi theorem on equitable colorings:

Every graph \(G\) has an equitable \(k\)-coloring for \(k \geq \Delta(G) + 1\).

Equitable colorings of graphs have been used to

- extend Chernoff-Hoeffding concentration bounds to dependent random variables (Pemmaraju, 2003)
- extend Arnold-Groeneveld order statistics bounds to dependent random variables (Kaul + Jacobson, 2005)
Bollobás-Eldridge Graph Packing Conjecture [1978]:
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.

The conjecture has only been proved when
\(\Delta_1 \leq 2\) [Aigner + Brandt (1993), and Alon + Fischer (1996)],
\(\Delta_1 = 3\) and \(n\) is huge [Csaba + Shokoufandeh + Szemerédi (2003)].

One of the graphs is sparse (\(d\)-degenerate) [Bollobás + Kostochka + Nakprasit (2004)].

Near-packing of degree 1 [Eaton (2000)].
Let us consider a refinement of the Bollobás-Eldridge Conjecture.

Conjecture: For a fixed $0 \leq \epsilon \leq 1$. If $(\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2} (1 + \epsilon) + 1$, then G_1 and G_2 pack.

For $\epsilon = 0$, this is essentially the Sauer-Spencer Theorem, while $\epsilon = 1$ gives the Bollobás-Eldridge conjecture.

For any $\epsilon > 0$ this would improve the Sauer-Spencer result (in a different way than Theorem 1).
Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\epsilon = 0.2$, and $\Delta_1, \Delta_2 \geq 300$,
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2}(1 + \epsilon) + 1$, then G_1 and G_2 pack.
Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\epsilon = 0.2$, and $\Delta_1, \Delta_2 \geq 300$,
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2}(1 + \epsilon) + 1$, then G_1 and G_2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\Delta_1, \Delta_2 \geq 300$,
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq (0.6)n + 1$, then G_1 and G_2 pack.
Some Ideas for the Proofs

We have to analyze the ‘minimal’ graphs that do not pack (under the given condition on Δ_1 and Δ_2).

(G_1, G_2) is a **critical pair** if G_1 and G_2 do not pack, but for each $e_1 \in E(G_1)$, $G_1 - e_1$ and G_2 pack, and for each $e_2 \in E(G_2)$, G_1 and $G_2 - e_2$ pack.

G_1 and G_2 do not pack, but removing one edge from either G_1 or G_2 allows them to pack.
Some Ideas for the Proofs

Each bijection \(f : V_1 \to V_2 \) generates a (multi)graph \(G_f \), with

\[
V(G_f) = \{(u, f(u)) : u \in V_1\}
\]

\((u, f(u)) \leftrightarrow (u', f(u')) \Leftrightarrow uu' \in E_1 \text{ or } f(u)f(u') \in E_2\)

Every vertex has two kinds of neighbors:
- green from \(G_1 \)
- red from \(G_2 \).
Some Ideas for the Proofs

Each bijection $f : V_1 \rightarrow V_2$ generates a (multi)graph G_f, with

$$V(G_f) = \{(u, f(u)) : u \in V_1\}$$

$$(u, f(u)) \leftrightarrow (u', f(u')) \iff uu' \in E_1 \text{ or } f(u)f(u') \in E_2$$

Every vertex has two kinds of neighbors: green from G_1 and red from G_2.

\[\begin{array}{c}
\text{G}_1 \\
\text{G}_2 \\
\text{G}_f \\
gives
\end{array} \]
\((u_1, \ldots, u_k)\)-switch means replace \(f \) by \(f' \), with

\[
f'(u) = \begin{cases}
 f(u) , & u \neq u_1, u_2, \ldots, u_k \\
 f(u_{i+1}) , & u = u_i , 1 \leq i \leq k - 1 \\
 f(u_1) , & u = u_k
\end{cases}
\]
Some Ideas for the Proofs

\((u_1, \ldots, u_k)\)-switch means replace \(f\) by \(f'\), with

\[
\begin{align*}
 f'(u) &= \begin{cases}
 f(u) & u \neq u_1, u_2, \ldots, u_k \\
 f(u_{i+1}) & u = u_i, 1 \leq i \leq k - 1 \\
 f(u_1) & u = u_k
 \end{cases}
\end{align*}
\]

green-neighbors of \(u_i \rightarrow\) green-neighbors of \(u_{i-1}\)
(u_1, \ldots, u_k)-switch means replace f by f', with

$$f'(u) = \begin{cases}
 f(u) & , \quad u \neq u_1, u_2, \ldots, u_k \\
 f(u_{i+1}) & , \quad u = u_i, \ 1 \leq i \leq k - 1 \\
 f(u_1) & , \quad u = u_k
\end{cases}$$
(\(u_1, \ldots, u_k\))-\textit{switch} means replace \(f\) by \(f'\), with

\[
f'(u) = \begin{cases}
 f(u) & , \quad u \neq u_1, u_2, \ldots, u_k \\
 f(u_{i+1}) & , \quad u = u_i , \quad 1 \leq i \leq k - 1 \\
 f(u_1) & , \quad u = u_k
\end{cases}
\]

\[
G_f \quad \text{(u_1, u_2)-switch} \quad G_{f'}
\]
An important structure that we utilize in our proof is -

\[(u_1, u_2; 1, 2)-\text{link}\] is a path of length two (in \(G_f\)) from \(u_1\) to \(u_2\) whose first edge is in \(E_1\) and the second edge is in \(E_2\).

A green-red path of length two from \(u_1\) to \(u_2\).
Some Ideas for the Proofs

An important structure that we utilize in our proof is -

\((u_1, u_2; 1, 2)-\text{link}\) is a path of length two (in \(G_f\)) from \(u_1\) to \(u_2\) whose first edge is in \(E_1\) and the second edge is in \(E_2\).

A green-red path of length two from \(u_1\) to \(u_2\).

For \(e \in E_1\), an \(e\)-packing (quasi-packing) of \((G_1, G_2)\) is a bijection \(f\) between \(V_1\) and \(V_2\) such that \(e\) is the only edge in \(E_1\) that shares its incident vertices with an edge from \(E_2\).

Such a packing exists for every edge \(e\) in a critical pair.
Outline of the Proof of Theorem 2

Key Lemma: Let u_1, \ldots, u_k be vertices of G. If

- for any i, there is no red-green path from u_i to u_{i+1}, and
- for $1 \leq i < j \leq k$, if $u_i u_j$ is a red edge, then $u_{i+1} u_{j+1}$ is either a red edge or is not an edge.

then a (u_1, \ldots, u_k)-switch does not create new conflicting edges.
Key Lemma: Let u_1, \ldots, u_k be vertices of G. If

- for any i, there is no red-green path from u_i to u_{i+1}, and
- for $1 \leq i < j \leq k$, if $u_i u_j$ is a red edge, then $u_{i+1} u_{j+1}$ is either a red edge or is not an edge.

then a (u_1, \ldots, u_k)-switch does not create new conflicting edges.
Key Lemma: Let \(u_1, \ldots, u_k \) be vertices of \(G \). If

- for any \(i \), there is no red-green path from \(u_i \) to \(u_{i+1} \), and
- for \(1 \leq i < j \leq k \), if \(u_i u_j \) is a red edge, then \(u_{i+1} u_{j+1} \) is either a red edge or is not an edge.

then a \((u_1, \ldots, u_k)\)-switch does not create new conflicting edges.
Using the Key Lemma

Consider a critical pair \((G_1, G_2)\).

There is a bijection between \(V(G_1)\) and \(V(G_2)\) with exactly one conflicting edge.

Why is the Key Lemma useful?
Using the Key Lemma

Why is the Key Lemma useful?
Structure of Counterexamples I

Graph Packing – p.22/26
Structure of Counterexamples I

A = vertices with only green-red paths from \(u^* \)

\(A = \frac{n}{2} (1 - \epsilon) \)

B = vertices with only red-green paths from \(u^* \)

\(B = \frac{n}{2} (1 - \epsilon) \)

C = vertices with both types of paths from \(u^* \)

\(C \leq n\epsilon \)
No red-green paths from u^* to A.
No green-red paths from u^* to B.

Graph Packing – p.23/26
Unique red-green paths from A to B.

$$(u^*, a, c, b) - \text{switch}$$
Let N be the number of pairs of vertices in $A \times B$ with exactly one red-green path between them.
Let N be the number of pairs of vertices in $A \times B$ with exactly one red-green path between them.

Lower Bound on N: $|A||B| - |A|\left(\Delta_1\Delta_2 - |B|\right)$, a counting argument.

Upper Bound on N: $M\Delta_1\Delta_2$, where M is the number of central vertices on the unique red-green paths.
The Primary Inequality

Let \(N \) be the number of pairs of vertices in \(A \times B \) with exactly one red-green path between them.

Lower Bound on \(N \) \(: |A| |B| - |A|\((\Delta_1 \Delta_2 - |B|) \)\), a counting argument.

Upper Bound on \(N \) \(: M \Delta_1 \Delta_2 \), where \(M \) is the number of central vertices on the unique red-green paths.

Compare the lower bound and the upper bound of \(N \).

\[
|A| |B| - |A|(\Delta_1 \Delta_2 - |B|) \leq M \Delta_1 \Delta_2
\]

Get an inequality for \(\epsilon \), leading to a contradiction.

Need an upper bound on \(M \) !
The Key Lemma –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1\Delta_2 \leq n\). Given any \(e \in E_1\), in a \(e\)-packing of \((G_1, G_2)\) with \(e = u_1u'_1\), the following statements are true.

(i) For every \(u \neq u'_1\), there exists either a unique \((u_1, u; 1, 2)\)-link or a unique \((u_1, u; 2, 1)\)-link,

(ii) there is no \((u_1, u'_1; 1, 2)\)-link or \((u_1, u'_1; 2, 1)\)-link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
The Key Lemma –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1\Delta_2 \leq n\). Given any \(e \in E_1\), in an \(e\)-packing of \((G_1, G_2)\) with \(e = u_1u_1\), the following statements are true.

(i) For every \(u \neq u'_1\), there exists either a unique \((u_1, u; 1, 2)\)-link or a unique \((u_1, u; 2, 1)\)-link,

(ii) there is no \((u_1, u'_1; 1, 2)\)-link or \((u_1, u'_1; 2, 1)\)-link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
The Key Lemma –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1 \Delta_2 \leq n\). Given any \(e \in E_1\), in a \(e\)-packing of \((G_1, G_2)\) with \(e = u_1 u'_1\), the following statements are true.

(i) For every \(u \neq u'_1\), there exists either a unique \((u_1, u; 1, 2)\)-link or a unique \((u_1, u; 2, 1)\)-link,

(ii) there is no \((u_1, u'_1; 1, 2)\)-link or \((u_1, u'_1; 2, 1)\)-link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
Lemma 2: If $2\Delta_1\Delta_2 = n$ and (G_1, G_2) is a critical pair, then every component of G_i is either K_{Δ_i,Δ_i} with Δ_i odd, or an isolated vertex, or K_{Δ_i+1}, $i = 1, 2$.

Lemma 2 allows us to settle the case of: Δ_1 or $\Delta_2 = 1$.

If $\Delta_2 = 1$, i.e., G_2 is a matching. Then $\Delta_1 = \frac{n}{2}$.

If G_1 contains K_{Δ_1,Δ_1}, then simply $G_1 = K_{\frac{n}{2}, \frac{n}{2}}$. $K_{\frac{n}{2}, \frac{n}{2}}$ cannot pack with a matching iff the matching is perfect and $\frac{n}{2}$ is odd.

If G_1 consists of $K_{\frac{n}{2}+1}$ and $\frac{n}{2} - 1$ isolated vertices, then it does not pack with a matching iff the matching is perfect.
Outline of the Proof of Theorem 1

Now, we have to give a packing for all remaining pairs of graphs, to eliminate their possibility.

The following Lemma says K_{Δ_1, Δ_1} exists only when K_{Δ_2, Δ_2} does, and vice-versa.

Lemma 3: Let $\Delta_1, \Delta_2 > 1$ and $2\Delta_1\Delta_2 = n$. If (G_1, G_2) is a critical pair and the conflicted edge in a quasi-packing belongs to a component H of G_2 isomorphic to K_{Δ_2, Δ_2}, then every component of G_1 sharing vertices with H is K_{Δ_1, Δ_1}.

Now, we pack such graphs.
Lemma 4: Suppose that $\Delta_1, \Delta_2 > 1$ and odd, and $2\Delta_1\Delta_2 = n$. If G_1 consists of Δ_2 copies of K_{Δ_1, Δ_1} and G_2 consists of Δ_1 copies of K_{Δ_2, Δ_2}, then G_1 and G_2 pack.
Outline of the Proof of Theorem 1

Lets eliminate the only remaining possibility.

Lemma 5: Let $\Delta_1, \Delta_2 > 1$ and $2\Delta_1 \Delta_2 = n$. If every non-trivial component of G_i is K_{Δ_i+1}, $i = 1, 2$, then G_1 and G_2 pack.

This would complete the proof of Theorem 1.