New Results on Graph Packing

Hemanshu Kaul

hkaul@math.uiuc.edu

www.math.uiuc.edu/~hkaul/.

University of Illinois at Urbana-Champaign
Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs of order at most n, with maximum degree Δ_1 and Δ_2, respectively.
Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs of order at most n, with maximum degree Δ_1 and Δ_2, respectively.

G_1 and G_2 are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \to [n] = \{1, 2, \ldots, n\}$, $i = 1, 2$, such that the images of the edge sets do not intersect.
Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs of order at most n, with maximum degree Δ_1 and Δ_2, respectively.

G_1 and G_2 are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, 2$, such that the images of the edge sets do not intersect.

We may assume $|V_1| = |V_2| = n$ by adding isolated vertices.
Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be graphs of order at most n, with maximum degree Δ_1 and Δ_2, respectively.

G_1 and G_2 are said to pack if there exist injective mappings of the vertex sets into $[n]$, $V_i \rightarrow [n] = \{1, 2, \ldots, n\}$, $i = 1, 2$, such that the images of the edge sets do not intersect.

- there exists a bijection $V_1 \leftrightarrow V_2$ such that $e \in E_1 \Rightarrow e \notin E_2$.
- G_1 is a subgraph of $\overline{G_2}$.
Examples and Non-Examples

C_5

C_5
Examples and Non-Examples

C_5

C_5

Packing
Examples and Non-Examples

C_5

C_5

$K_{4,4}$

$4K_2$

Packing
Examples and Non-Examples

C₅

C₅

Packing

K₄,₄

4 K₂

Packing
Examples and Non-Examples

\[K_{3,3} \quad \text{3} \, K_2 \]
Examples and Non-Examples

\[K_{3,3} \]

\[3 \, K_2 \]

No Packing
Examples and Non-Examples

- $K_{3,3}$
- 3 K_2
- No Packing
- 2 K_2
- K_3
Examples and Non-Examples

$K_{3,3}$

3 K_2

No Packing

2 K_2

K_3

No Packing
Hamiltonian Cycle in graph G: Whether the n-cycle C_n packs with \overline{G}.

A Common Generalization
A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_n packs with \overline{G}.
- Existence of a subgraph H in G : Whether H packs with \overline{G}.
A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_n packs with \overline{G}.
- Existence of a subgraph H in G : Whether H packs with \overline{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n/k.
A Common Generalization

- Hamiltonian Cycle in graph G: Whether the n-cycle C_n packs with \overline{G}.
- Existence of a subgraph H in G: Whether H packs with \overline{G}.
- Equitable k-coloring of graph G: Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).
A Common Generalization

- Hamiltonian Cycle in graph G : Whether the n-cycle C_n packs with \overline{G}.
- Existence of a subgraph H in G : Whether H packs with \overline{G}.
- Equitable k-coloring of graph G : Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.
A Common Generalization

- Hamiltonian Cycle in graph G: Whether the n-cycle C_n packs with \overline{G}.
- Existence of a subgraph H in G: Whether H packs with \overline{G}.
- Equitable k-coloring of graph G: Whether G packs with k cliques of order n/k.
- Turan-type problems (forbidden subgraphs).
- Ramsey-type problems.
- “most” problems in Extremal Graph Theory.
In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.
In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.
A Distinction

In packing problems, each member of a ‘large’ family of graphs contains each member of another ‘large’ family of graphs.

In subgraph problems, (usually) at least one of the two graphs is fixed.

Erdős-Sos Conjecture: Let G be a graph of order n and T be a tree of size k. If $e(G) < \frac{1}{2}n(n - k)$ then T and G pack.
Theorem [Sauer + Spencer, 1978]:
If $2\Delta_1\Delta_2 < n$, then G_1 and G_2 pack.
Theorem [Sauer + Spencer, 1978]:
If $2\Delta_1\Delta_2 < n$, then G_1 and G_2 pack.

This is sharp.

For n even.

$G_1 = \frac{n}{2}K_2$, a perfect matching on n vertices.

$G_2 \supseteq K_{\frac{n}{2}+1}$, or

$G_2 = K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd.

Then, $2\Delta_1\Delta_2 = n$, and G_1 and G_2 do not pack.
Sauer and Spencer’s Packing Theorem

\[G_1 = K_{\frac{n}{2}, \frac{n}{2}} \text{ with } \frac{n}{2} \text{ odd} \]

\[G_2 = \frac{n}{2}K_2 \]

\[G_1 = \frac{n}{2}K_2 \]

\[G_2 \supseteq K_{\frac{n}{2}+1} \]
Theorem 1 [Kaul + Kostochka, 2005]:
If $2\Delta_1 \Delta_2 \leq n$, then
G_1 and G_2 do not pack if and only if
one of G_1 and G_2 is a perfect matching and the other
either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

This result characterizes the extremal graphs for the
Sauer-Spencer Theorem.

To appear in *Combinatorics, Probability and Computing*.
Theorem 1 [Kaul + Kostochka, 2005]:
If $2\Delta_1 \Delta_2 \leq n$, then
G_1 and G_2 do not pack if and only if
one of G_1 and G_2 is a perfect matching and the other
either is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

This result can also be thought of as a small step
towards the well-known Bollobás-Eldridge conjecture.

Bollobás-Eldridge Graph Packing Conjecture:
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1$ then G_1 and G_2 pack.
Bollobás-Eldridge Graph Packing Conjecture [1978]: If \((\Delta_1 + 1)(\Delta_2 + 1) \leq n + 1\) then \(G_1\) and \(G_2\) pack.

If true, this conjecture would be sharp, and would be a considerable extension of the Hajnal-Szemerédi theorem on equitable colorings.

The conjecture has only been proved when

\(\Delta_1 \leq 2\) [Aigner + Brandt (1993), and Alon + Fischer (1996)], or

\(\Delta_1 = 3\) and \(n\) is huge [Csaba + Shokoufandeh + Szemerédi (2003)].
Let us consider a refinement of the Bollobás-Eldridge Conjecture.

Conjecture: For a fixed $0 \leq \epsilon \leq 1$. If $(\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2}(1 + \epsilon) + 1$, then G_1 and G_2 pack.

For $\epsilon = 0$, this is essentially the Sauer-Spencer Theorem, while $\epsilon = 1$ gives the Bollobás-Eldridge conjecture.

For any $\epsilon > 0$ this would improve the Sauer-Spencer result (in a different way than Theorem 1).
Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For \(\epsilon = 0.2 \), and \(\Delta_1, \Delta_2 \geq 400 \),
If \((\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2}(1 + \epsilon) + 1 \), then \(G_1 \) and \(G_2 \) pack.
Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\epsilon = 0.2$, and $\Delta_1, \Delta_2 \geq 400$,
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq \frac{n}{2}(1 + \epsilon) + 1$, then G_1 and G_2 pack.

In other words,

Theorem 2 [Kaul + Kostochka + Yu, 2005+]:
For $\Delta_1, \Delta_2 \geq 400$,
If $(\Delta_1 + 1)(\Delta_2 + 1) \leq (0.6)n + 1$, then G_1 and G_2 pack.

This is work in progress.
Some Proof Ideas for Theorem 1

Theorem 1 [Kaul + Kostochka, 2005]:
If \(2\Delta_1\Delta_2 \leq n\), then
\(G_1\) and \(G_2\) do not pack if and only if
one of \(G_1\) and \(G_2\) is a perfect matching and the other
either is \(K_{\frac{n}{2}, \frac{n}{2}}\) with \(\frac{n}{2}\) odd or contains \(K_{\frac{n}{2}+1}\).

We have to analyze the ‘minimal’ graphs that do not
pack (under the condition \(2\Delta_1\Delta_2 \leq n\)).

\((G_1, G_2)\) is a critical pair if \(G_1\) and \(G_2\) do not pack, but for
each \(e_1 \in E(G_1)\), \(G_1 - e_1\) and \(G_2\) pack, and for each
\(e_2 \in E(G_2)\), \(G_1\) and \(G_2 - e_2\) pack.
Each bijection $f : V_1 \rightarrow V_2$ generates a (multi)graph G_f, with

$$V(G_f) = \{(u, f(u)) : u \in V_1\}$$

$$(u, f(u)) \leftrightarrow (u', f(u')) \iff uu' \in E_1 \text{ or } f(u)f(u') \in E_2$$
Each bijection $f : V_1 \rightarrow V_2$ generates a (multi)graph G_f, with

$$V(G_f) = \{(u, f(u)) : u \in V_1\}$$

$$(u, f(u)) \leftrightarrow (u', f(u')) \iff uu' \in E_1 \text{ or } f(u)f(u') \in E_2$$

![Diagram showing the transformation of G_1 to G_f through f](image)
(u_1, u_2)-switch means replace f by f', with

$$f'(u) = \begin{cases}
 f(u) & u \neq u_1, u_2 \\
 f(u_2) & u = u_1 \\
 f(u_1) & u = u_2
\end{cases}$$
\((u_1, u_2)\)-switch means replace \(f\) by \(f'\), with

\[
f'(u) = \begin{cases}
 f(u), & u \neq u_1, u_2 \\
 f(u_2), & u = u_1 \\
 f(u_1), & u = u_2
\end{cases}
\]

2-neighbors of \(u_1 \leftrightarrow 2\)-neighbors of \(u_2\)
Some Proof Ideas for Theorem 1

\((u_1, u_2)\)-switch means replace \(f\) by \(f'\), with

\[
f'(u) = \begin{cases}
 f(u) & , \ u \neq u_1, u_2 \\
 f(u_2) & , \ u = u_1 \\
 f(u_1) & , \ u = u_2
\end{cases}
\]

\(G_f\) \rightarrow \text{(u_1 , u_2)-switch} \rightarrow G_{f'}
An important structure that we utilize in our proof is -

\((u_1, u_2; 1, 2)-\text{link}\) is a path of length two (in \(G_f\)) from \(u_1\) to \(u_2\) whose first edge is in \(E_1\) and the second edge is in \(E_2\).

For \(e \in E_1\), an \textit{e-packing (quasi-packing)} of \((G_1, G_2)\) is a bijection \(f\) between \(V_1\) and \(V_2\) such that \(e\) is the only edge in \(E_1\) that shares its incident vertices with an edge from \(E_2\).

Such a packing exists for every edge \(e\) in a critical pair.
Outline of the Proof of Theorem 1

The main tool –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1\Delta_2 \leq n\). Given any \(e \in E_1\), in a \(e\)–packing of \((G_1, G_2)\) with \(e = u_1u'_1\), the following statements are true.

(i) For every \(u \neq u'_1\), there exists either a unique \((u_1, u; 1, 2)\)–link or a unique \((u_1, u; 2, 1)\)–link,

(ii) there is no \((u_1, u'_1; 1, 2)\)–link or \((u_1, u'_1; 2, 1)\)–link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
The main tool –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1\Delta_2 \leq n\). Given any \(e \in E_1\), in a \(e\)-packing of \((G_1, G_2)\) with \(e = u_1u_1'\), the following statements are true.

(i) For every \(u \neq u_1'\), there exists either a unique \((u_1, u; 1, 2)\)-link or a unique \((u_1, u; 2, 1)\)-link,

(ii) there is no \((u_1, u_1'; 1, 2)\)-link or \((u_1, u_1'; 2, 1)\)-link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
The main tool –

Lemma 1: Let \((G_1, G_2)\) be a critical pair and \(2\Delta_1\Delta_2 \leq n\). Given any \(e \in E_1\), in a \(e\)-packing of \((G_1, G_2)\) with \(e = u_1u'_1\), the following statements are true.

(i) For every \(u \neq u'_1\), there exists either a unique \((u_1, u; 1, 2)\)-link or a unique \((u_1, u; 2, 1)\)-link,

(ii) there is no \((u_1, u'_1; 1, 2)\)-link or \((u_1, u'_1; 2, 1)\)-link,

(iii) \(2\deg_{G_1}(u_1)\deg_{G_2}(u_1) = n\).
Lemma 2: If \(2\Delta_1\Delta_2 = n\) and \((G_1, G_2)\) is a critical pair, then every component of \(G_i\) is either \(K_{\Delta_i, \Delta_i}\) with \(\Delta_i\) odd, or an isolated vertex, or \(K_{\Delta_i+1}, \ i = 1, 2\).

Lemma 2 allows us to settle the case of: \(\Delta_1\) or \(\Delta_2 = 1\).

Then, we have to give a packing for all remaining pairs of graphs, to eliminate their possibility.
The following Lemma limits the possible remaining pairs of graphs.

Lemma 3: Let $\Delta_1, \Delta_2 > 1$ and $2\Delta_1\Delta_2 = n$. If (G_1, G_2) is a critical pair and the conflicted edge in a quasi-packing belongs to a component H of G_2 isomorphic to K_{Δ_2, Δ_2}, then every component of G_1 sharing vertices with H is K_{Δ_1, Δ_1}.

Now, we completely eliminate such graphs.

Lemma 4: Suppose that $\Delta_1, \Delta_2 \geq 3$ and odd, and $2\Delta_1\Delta_2 = n$. If G_1 consists of Δ_2 copies of K_{Δ_1, Δ_1} and G_2 consists of Δ_1 copies of K_{Δ_2, Δ_2}, then G_1 and G_2 pack.
Outline of the Proof of Theorem 1

Now, let's eliminate the only remaining possibility.

Lemma 5: Let $\Delta_1, \Delta_2 > 1$ and $2\Delta_1\Delta_2 = n$. If every non-trivial component of G_i is K_{Δ_i+1}, $i = 1, 2$, then G_1 and G_2 pack.

This would complete the proof of Theorem 1.