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Introduction

We want to model systems composed of several
interacting components, where each component
can be in one of many possible states.

Objective : Maximize a measure of performance of
the system based on contributions from each
component, depending on the state of the
component and its ‘interaction’ with its neighbors.
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Background

In 1987, Kauffman and Levin introduced

The NK model

N counts the number of components in the system

K measures the ‘degree’ of interaction between
components
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Background

In 1987, Kauffman and Levin introduced

The NK model

N counts the number of components in the system

K measures the ‘degree’ of interaction between
components

The NK model was originally proposed to study the
evolution of genomes.

system ≡ genome

components ≡ genes

states ≡ gene mutations

performance measure
≡ fitness
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Applications I

In Biology

maturation of immune response
evolution of protein or RNA sequences
molecular quasi-species

For example, an antibody (system) is a collection of
amino acid sites (components) with each site
containing one of twenty amino acids (states), then
the affinity (performance measure) of an antibody
for a particular antigen depends on how the chosen
amino acids interact with each other.
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Applications II

In Physics and Management Science

spin glasses
effectiveness of a project team
process of organizational change

For example, a spin glass is defined as a system
consisting of contiguous atoms (components). For
each atom, it is possible to select a spin up or spin
down (states). The total energy (performance
measure) depends on how the selected spins
interact. The objective is to choose spins so that
the energy is minimized.
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Mathematical Description

System – A vector with N components, each of which
can be in one of p possible states.
x = (x0, ..., xN−1), with xi ∈ {0, 1, 2, . . . , p − 1} and the
numbers 0, 1, 2, ..., p − 1 used as labels for the states.
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Mathematical Description

System – A vector with N components, each of which
can be in one of 2 possible states.
x = (x0, ..., xN−1), with xi ∈ {0, 1} and the numbers 0, 1
used as labels for the states.
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Mathematical Description

System – A vector with N components, each of which
can be in one of 2 possible states.
x = (x0, ..., xN−1), with xi ∈ {0, 1} and the numbers 0, 1
used as labels for the states.

Performance Measure –

Φ(x) =
1

N

N−1
∑

i=0

φi(x)

φi(x) is the performance contribution from each
component i.
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Performance Measure

Performance Measure –

Φ(x) =
1

N

N−1
∑

i=0

φi(x)
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Performance Measure

Performance Measure –

Φ(x) =
1

N

N−1
∑

i=0

φi(x)

φi, the contribution of component i to the overall
performance of the system depends on

its own state, and

the states of K ‘neighboring’ components.
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Performance Measure

N = 6 and K = 3

System (0 , 1 , 1 , 0 , 1 , 0)
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Performance Measure

N = 6 and K = 3
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0) =??
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0) = 1
4 [φ0(0, 1, 1) + . . .]
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0) = 1
4 [φ0(0, 1, 1) + φ1(1, 1, 0) + . . .]
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0) = 1
4 [φ0(0, 1, 1) + φ1(1, 1, 0) + φ2(1, 0, 0) + . . .]
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 0) + φ2(1, 0, 0)+φ3(0, 0, 1)]
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Performance Measure - Definition, Example

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

where arithmetic in the subscripts is done modulo N and φi are
N distinct real-valued functions on {0, 1}K+1.

N = 4 and K = 2

Φ(0,1,1,0)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 0)+φ2(1, 0, 0)+φ3(0, 0, 1)]
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Overlap

Question – Given N, K , 0 ≤ K ≤ N − 1 , and
φi : {0, 1}K+1 → R , i = 0, 1, . . . , N−1

How can we find a system with the best possible
performance ?

max{Φ(x) | x ∈ {0, 1}N}
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Overlap

N = 4 and K = 2
2N = 24 = 16 possible systems

Kauffman NK Model – p.12/36



Overlap

N = 4 and K = 2
2N = 24 = 16 possible systems

Φ(0,0,0,0)= 1
4 [φ0(0, 0, 0)+φ1(0, 0, 0)+φ2(0, 0, 0)+φ3(0, 0, 0)]

Φ(0,0,1,0)= 1
4 [φ0(0, 0, 1)+φ1(0, 1, 0)+φ2(1, 0, 0)+φ3(0, 0, 0)]

Φ(0,1,1,0)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 0)+φ2(1, 0, 0)+φ3(0, 0, 1)]

Φ(0,1,1,1)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 1)+φ2(1, 1, 0)+φ3(1, 0, 1)]

Φ(1,1,1,1)= 1
4 [φ0(1, 1, 1)+φ1(1, 1, 1)+φ2(1, 1, 1)+φ3(1, 1, 1)]
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Central Question

Given N, K , 0 ≤ K ≤ N − 1 , and
φi : {0, 1}K+1 → R , i = 0, 1, . . . , N−1

What can we say about the Global Optima, the system
that maximizes the value of the performance measure?

max{Φ(x) | x ∈ {0, 1}N}
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Central Question

Given N, K , 0 ≤ K ≤ N − 1 , and
φi : {0, 1}K+1 → R , i = 0, 1, . . . , N−1

What can we say about the Global Optima, the system
that maximizes the value of the performance measure?

max{Φ(x) | x ∈ {0, 1}N}

NP-complete problem.

In applications it is difficult, if not impossible, to
determine the values taken by φi.

So, this combinatorial optimization problem is formulated
and studied probabilistically.
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Probability and Optimization I

Generate values of φi(.) stochastically.
For real-life scenarios in which the functions φi are not
deterministically known, a universally adopted
approach is to generate for each φi(.) a random
number based on a probability distribution F .

This is analogous to replacing a “weight” in a
combinatorial optimization model with a random
variable, to better model uncertainty.

This is an idea inherent in Stochastic Programming.
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Probability and Optimization II

“Average behavior” – Intractable combinatorial
optimization problems are often studied probabilistically
by introducing some notion of a random instance.

For example, in stochastic Traveling Salesman Problem
(TSP), the distances (“weights”) between the vertices
of a graph are replaced by i.i.d uniform random
variables. Replace φi(.) with random variables.

This is an idea inherent in Probabilistic Combinatorial
Optimization.
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Probabilistic Question

Given N , K, with 0 ≤ K ≤ N − 1 , and N2K+1 random
variables φi(y) for y ∈ {0, 1}K+1 , i = 0, 1, . . . , N−1,
independently and identically distributed as F .

Study the distribution of the global optima –

XN,K = max{Φ(x) | x ∈ {0, 1}N}

where Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K).
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Overlap

N = 4 and K = 2
2N = 24 = 16 possible systems

Φ(0,0,0,0)= 1
4 [φ0(0, 0, 0)+φ1(0, 0, 0)+φ2(0, 0, 0)+φ3(0, 0, 0)]

Φ(0,0,1,0)= 1
4 [φ0(0, 0, 1)+φ1(0, 1, 0)+φ2(1, 0, 0)+φ3(0, 0, 0)]

Φ(0,1,1,0)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 0)+φ2(1, 0, 0)+φ3(0, 0, 1)]

Φ(0,1,1,1)= 1
4 [φ0(0, 1, 1)+φ1(1, 1, 1)+φ2(1, 1, 0)+φ3(1, 0, 1)]

Φ(1,1,1,1)= 1
4 [φ0(1, 1, 1)+φ1(1, 1, 1)+φ2(1, 1, 1)+φ3(1, 1, 1)]
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Previous Research

Research Question– How do the varying values of N

and K affect the performance of the systems?
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Previous Research

Research Question– How do the varying values of N

and K affect the performance of the systems?

Mostly study of local optima w.r.t. a Hamming
distance based neighborhood structure.

Mostly simulation-based results and applications.

Solow et. al (2000) showed the global decision
problem is NP-complete.
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Previous Research

Evans and Steinsaltz (2002)
convert to an infinite-dimensional variational
problem
explicit bounds only when K =1 and F is
exponential distribution

Durrett and Limic (2003)
use the theory of substochastic Harris chains
explicit bounds only when K =1 and F is
negative exponential distribution

Numerous other papers (both Applications and
Theory).
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Our Focus

Study XN,K = max{Φ(x) | x ∈ {0, 1}N}

Develop a simple computational set-up,
independent of the underlying distribution F
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Our Focus

Study XN,K = max{Φ(x) | x ∈ {0, 1}N}

Develop a simple computational set-up,
independent of the underlying distribution F

Develop methodology for finding bounds on the
moments of XN,K , independent of the underlying
distribution F

Kauffman NK Model – p.19/36



Our Focus

Study XN,K = max{Φ(x) | x ∈ {0, 1}N}

Develop a simple computational set-up,
independent of the underlying distribution F

Develop methodology for finding bounds on the
moments of XN,K , independent of the underlying
distribution F

Find explicit bounds on the expectation of XN,K

when K is function of N , for fundamental
underlying distributions like uniform and normal.
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Study XN,K = max{Φ(x) | x ∈ {0, 1}N}

Develop a simple computational set-up,
independent of the underlying distribution F

Develop methodology for finding bounds on the
moments of XN,K , independent of the underlying
distribution F

Find explicit bounds on the expectation of XN,K

when K is function of N , for fundamental
underlying distributions like uniform and normal.

Show concentration of XN,K around its mean, EN,K .
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Our Focus

Develop a simple computational set-up,
independent of the underlying distribution F

Develop methodology for finding bounds on the
moments of XN,K , independent of the underlying
distribution F

Find explicit bounds on the expectation of XN,K

when K is function of N , for fundamental
underlying distributions like uniform and normal.

Show concentration of XN,K around its mean, EN,K .

We use tools from Combinatorics and Graph Theory,
Networks, Probability and Statistics, and Geometry.
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NK model as a Stochastic Network

Network DN,K 2K+1 × (N + 1) array of vertices,
vi
t

, t ∈ {0, 1}K+1
, 0 ≤ i ≤ N

each vertex, vi
t
, corresponds to component i and t, the

state vector for the component and its K neighbors.
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NK model as a Stochastic Network

Network DN,K 2K+1 × (N + 1) array of vertices,
vi
t

, t ∈ {0, 1}K+1
, 0 ≤ i ≤ N

each vertex, vi
t
, corresponds to component i and t, the

state vector for the component and its K neighbors.

Idea – Create a correspondence between the systems
and the directed paths in this network.
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NK model as a Stochastic Network

Network DN,K 2K+1 × (N + 1) array of vertices,
vi
t

, t ∈ {0, 1}K+1
, 0 ≤ i ≤ N

each vertex, vi
t
, corresponds to component i and t, the

state vector for the component and its K neighbors.

Idea – Create a correspondence between the systems
and the directed paths in this network.

vi
t
→ v

j

t̂
⇔ j = i + 1 and t̂i = ti+1, i = 1, . . . ,K

and t̂K+1 ∈ {0, 1}
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NK model as a Stochastic Network

Network DN,K 2K+1 × (N + 1) array of vertices,
vi
t

, t ∈ {0, 1}K+1
, 0 ≤ i ≤ N

each vertex, vi
t
, corresponds to component i and t, the

state vector for the component and its K neighbors.

Idea – Create a correspondence between the systems
and the directed paths in this network.

vi
t
→ v

j

t̂
⇔ j = i + 1 and t̂i = ti+1, i = 1, . . . ,K

and t̂K+1 ∈ {0, 1}

Each vi
t

has a weight generated by the performance
contribution (and random variable) φi(t).
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Network DN,K

N = 4 and K = 1
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JĴ

J
J

J
JĴ
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Green path corresponds to the system {0, 0, 1, 0} and the

weight of the path is the performance measure of this

system.
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Network DN,K

N = 4 and K = 1
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t to vN
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l

Each system and its performance
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SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN

t
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SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN
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SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN

t

ltN,K ≡ r.v. for maximum weight of a directed path in Dt

N,K

Kauffman NK Model – p.23/36



SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN

t

ltN,K ≡ r.v. for maximum weight of a directed path in Dt

N,K

Since each of the 2K+1 subnetworks has identical
structure, each ltN,K is identically distributed.

lN,K ≡ common r.v. for each ltN,K
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SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN

t

ltN,K ≡ r.v. for maximum weight of a directed path in Dt

N,K

Since each of the 2K+1 subnetworks has identical
structure, each ltN,K is identically distributed.

lN,K ≡ common r.v. for each ltN,K

∴ XN,K = 1
N max{2K+1 identically distributed lN,K }
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SubNetwork Dt
N,K

Dt

N,K ≡ subnetwork of DN,K defined by all the directed
paths between v0

t
and vN

t

ltN,K ≡ r.v. for maximum weight of a directed path in Dt

N,K

lN,K ≡ common r.v. for each ltN,K

XN,K = 1
N max{2K+1 identically distributed lN,K }

XN,K = 1
N max{2N identically distributed Φ(x) }

– Order Statistics

– Project Duration in PERT networks
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Computational Strategy for K close toN

Observation – The value of N−K determines the
general structure of subnetwork Dt

N,K , while N

determines its size.
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Computational Strategy for K close toN

This leads to –

For each K, 1 ≤ K ≤ N − 3,

lN,K = X + max {two identically distributed lN−1,K} ,

where the boundary conditions are
lK+2,K = X + max {two i.i.d. lK+1,K} , X ∼ F

lK+1,K =
N

∑

i=1

Xi , {Xi} i.i.d. F

Each recursive step reduces the value of N and brings
it closer to the (fixed) value of K, until N = K + 1.
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D
′

N,K – Computational Strategy for smallK

D
′

N,K ≡ Network formed from DN,K by deleting the
vertices in the K+1 columns from N − K to N and
adding a source and a sink
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D
′

N,K – Computational Strategy for smallK

D
′

N,K ≡ Network formed from DN,K by deleting the
vertices in the K+1 columns from N − K to N and
adding a source and a sink

Each directed path in D
′

N,K corresponds to a unique
system, but not all feasible systems are represented by
a path in D

′

N,K .
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D
′

N,K – Computational Strategy for smallK

D
′

N,K ≡ Network formed from DN,K by deleting the
vertices in the K+1 columns from N − K to N and
adding a source and a sink

Each directed path in D
′

N,K corresponds to a unique
system, but not all feasible systems are represented by
a path in D

′

N,K .

XN,K ≥ 1
N

[

l
′

N,K +
∑N−1

i=N−K Xi

]

, Xi i.i.d. F

l
′

N,K ≡ maximum weight of a directed path in D
′

N,K
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D
′′

N,K – Computational Strategy for smallK

D
′′

N,K ≡ Network formed from DN,K by deleting the
vertices in column N and adding a source and a sink
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JĴ

Z
ZZ~

Z
ZZ~

Z
ZZ~

- - -
i =0 1 2 3

s s�
�
�7

���1
PPPqS

S
Sw

ts

S
SSwPPPq

���1

�
��7

N =4 , K =1 DN,K D
′′

N,K

Kauffman NK Model – p.26/36



D
′′

N,K – Computational Strategy for smallK

D
′′

N,K ≡ Network formed from DN,K by deleting the
vertices in column N and adding a source and a sink

Each feasible system corresponds to a unique directed
path in D

′′

N,K , but not all directed paths represent a
system.
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D
′′

N,K – Computational Strategy for smallK

D
′′

N,K ≡ Network formed from DN,K by deleting the
vertices in column N and adding a source and a sink

Each feasible system corresponds to a unique directed
path in D

′′

N,K , but not all directed paths represent a
system.

XN,K ≤ 1
N

[

l
′′

N,K

]

l
′′

N,K ≡ maximum weight of a directed path in D
′′

N,K
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D
′

N,K and D
′′

N,K
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N =4 , K =1 D
′′

N,K D
′

N,K

D
′

N,K has N − K columns and D
′′

N,K has N columns.

For fixed K, the bounds in terms of l
′

N,K and l
′′

N,Kwill be

asymptotically tight.
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Dependency Graph

XN,K = 1
N max{2N identically distributed Φ(x) }
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Dependency Graph

XN,K = 1
N max{2N identically distributed Φ(x) }

Dependence between Φ(x) and Φ(y) , x,y ∈ {0, 1}N

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

Φ(y) = 1
N

∑N−1
i=0 φi(yi, . . . , yi+K)
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Dependency Graph

XN,K = 1
N max{2N identically distributed Φ(x) }

Dependence between Φ(x) and Φ(y) , x,y ∈ {0, 1}N

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

Φ(y) = 1
N

∑N−1
i=0 φi(yi, . . . , yi+K)

Φ(x) and Φ(y) are dependent ⇔
there exists i such that xj = yj for i ≤ j ≤ i + K
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Dependency Graph

Dependence between Φ(x) and Φ(y) , x,y ∈ {0, 1}N

Φ(x) = 1
N

∑N−1
i=0 φi(xi, . . . , xi+K)

Φ(y) = 1
N

∑N−1
i=0 φi(yi, . . . , yi+K)

Φ(x) and Φ(y) are dependent ⇔
there exists i such that xj = yj for i ≤ j ≤ i + K

GN,K ≡ dependency graph for given N , K

vertices ≡ x ∈ {0, 1}N

x ↔ y ⇔ Φ(x) and Φ(y) are dependent
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Dependency Graph, contd.

GN,K has 2N vertices, one for each system.

An edge between two vertices means there is
dependence between the performance measures
of the corresponding systems.
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Dependency Graph, contd.

GN,K has 2N vertices, one for each system.

An edge between two vertices means there is
dependence between the performance measures
of the corresponding systems.

Want to partition the vertex set of GN,K ,
V (GN,K) = V1 t V2 t . . . t Vt , such that

- there are no edges within each class Vi

- sizes of any two classes differ by at most 1
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Dependency Graph, contd.

Want to partition the vertex set of GN,K ,
V (GN,K) = V1 t V2 t . . . t Vt , such that

- there are no edges within each class Vi

- sizes of any two classes differ by at most 1

t-equitable coloring of GN,K
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Dependency Graph, contd.

Want to partition the vertex set of GN,K ,
V (GN,K) = V1 t V2 t . . . t Vt , such that

- there are no edges within each class Vi

- sizes of any two classes differ by at most 1

t-equitable coloring of GN,K

Theorem : ∆(GN,K) ≤ N2N−K−2 for all K, with equality
for N

2 ≤ K ≤ N − 2.

∆(G) ≡ maximum degree, the most number of vertices that are

adjacent to a vertex in G
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Dependency Graph, contd.

Want to partition the vertex set of GN,K ,
V (GN,K) = V1 t V2 t . . . t Vt , such that

- there are no edges within each class Vi

- sizes of any two classes differ by at most 1

t-equitable coloring of GN,K

Theorem : ∆(GN,K) ≤ N2N−K−2 for all K, with equality
for N

2 ≤ K ≤ N − 2.

Theorem : GN,K has a t-equitable coloring if t > N2N−K−2
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Dependency Graph, contd.

Want to partition the vertex set of GN,K ,
V (GN,K) = V1 t V2 t . . . t Vt , such that

- there are no edges within each class Vi

- sizes of any two classes differ by at most 1

t-equitable coloring of GN,K

Theorem : ∆(GN,K) ≤ N2N−K−2 for all K, with equality
for N

2 ≤ K ≤ N − 2.

Theorem : GN,K has a t-equitable coloring if t > N2N−K−2

How is this useful?
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F

XN,K =
1

N
max{2N identically distributed Φ(x) }

=
1

N
max{2N identically distributed

N
∑

i=1

φi } , {φi} i. i. d. F

=
1

N
max{2N identically distributed Φ(x) } , Φ(x) ∼ FN

=
1

N
Y[2N ] , Yi ∼ FN ; {Yi | i=1, , . . . , 2N} = {Φ(x) |x ∈ {0, 1}N}
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F

XN,K =
1
N

Y[2N ] , Yi ∼ FN ; {Yi} = {Φ(x)} dependent
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F

XN,K =
1
N

Y[2N ] , Yi ∼ FN ; {Yi} = {Φ(x)} dependent

Theorem : For all N, K, with underlying distribution F , if
GN,K has t-equitable coloring then

E[Y[2N/t]] ≤ E[XN,K ] ≤ E[Y[2N/t]] +
√

t Var[Y[2N/t]]

where Y1, . . . , Yk i.i.d. FN .
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F

XN,K =
1
N

Y[2N ] , Yi ∼ FN ; {Yi} = {Φ(x)} dependent

Theorem : For all N, K, with underlying distribution F ,

E[Y[2K+2/N ]] ≤ E[XN,K ] ≤ E[Y[2K+2/N ]]+
√

N2N−K−2Var[Y[2K+2/N ]]

where Y1, . . . , Yk i.i.d. FN .
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Bounds on Order Statistics

Notation : Y[n] = max {Y1, . . . , Yn}

FN ≡ distribution of
∑N

i=1 Xi , for Xi i.i.d. F

XN,K =
1
N

Y[2N ] , Yi ∼ FN ; {Yi} = {Φ(x)} dependent

Theorem : For all N, K, with underlying distribution F ,

E[Y[2K+2/N ]] ≤ E[XN,K ] ≤ E[Y[2K+2/N ]]+
√

N2N−K−2Var[Y[2K+2/N ]]

where Y1, . . . , Yk i.i.d. FN .

Proofs use tools from Order Statistics and the Equitable Coloring of

Graphs.
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Order Statistics with Dependencies

A dependency graph for random variables X1, . . . , Xn,
G(X1, . . . , Xn), has vertex set [n] and an edge set such
that for each i ∈ [n], Xi is mutually independent of all
other Xj such that {i, j} is not an edge.

Y[n] = max {Y1, . . . , Yn}

Theorem : Let X1, . . . , Xn be identically distributed
random variables with distribution F . If G(X1, . . . , Xn)
has a t-equitable coloring, then

E[Y[n/t]] ≤ E[X[n]] ≤ E[Y[n/t]] +
√

(t − 1)Var[Y[n/t]]

where Y1, . . . , Yk i.i.d. F .
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Order Statistics with Dependencies

Theorem : Let X1, . . . , Xn be identically distributed
(dependent) random variables with distribution F . If
G(X1, . . . , Xn) has a t-equitable coloring, then

E[Y[n/t]] ≤ E[X[n]] ≤ E[Y[n/t]] +
√

(t − 1)Var[Y[n/t]]

where Y1, . . . , Yk i.i.d. F .

Convert the problem of bounding order statistics of
dependent random variables into that of independent
random variables while incorporating quantitative
information about the mutual dependencies between
the original random variables
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Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N
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Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N

Theorem :For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

√

(1− c
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N
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Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N

Theorem :For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

√

(1− c
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)
√

(β+ 2
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N
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Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N

Theorem :For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

√

(1− c
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)
√

(β+ 2
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Tight bounds on E[XN,K ] valid for all N and for K close to N

Kauffman NK Model – p.32/36



Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N

Theorem :For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

√

(1− c
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)
√

(β+ 2
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Leading Coefficients in both upper and lower bounds are equal to
√

2 log 2
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Bounds whenF = n(0, 1)

Theorem :For all N ≥ 2 , K = N − 1 ,

√
2 log 2 − o(1)

√
N

≤ E[XN,K ] ≤
√

(1 + 1
N )2 log 2 − o(1)

√
N

Theorem :For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

√

(1− c
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)
√

(β+ 2
N )2 log 2 − 2 log N

N − o(1)
√

N
≤ E[XN,K ] ≤

√

(1+ 1
N )2 log 2 − o(1)

√
N

Proofs use the previous Theorems and the properties of Normal

Distribution & its order statistics
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Bounds whenF = u(0, 1)

“Sum of Normals is Normal”!

Sum of Uniforms does not have a nice distribution.

Need to find an alternate description of the Distribution
of sum of Uniforms !
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Bounds whenF = u(0, 1)

When {Xj} i. i. d. u(0, 1) ,

Pr

{

N
∑

j=1
Xj ≤ x

}

is equal to the volume of

P (x) =







y ∈ R
N |

N
∑

j=1

yj ≤ x and 0 ≤ yj ≤ 1







a subset of the N-dimensional hypercube [0, 1]N .
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Bounds whenF = u(0, 1)

We prove lemmas about V ol(P (x)) that help to
decompose the expectation integral.
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Bounds whenF = u(0, 1)

We prove lemmas about V ol(P (x)) that help to
decompose the expectation integral.

For Example,
a lower bound on x that forces the volume of P (x) to
approach 1, the volume of the [0, 1]N cube, very rapidly.

Lemma :
If x > (1 − 1

2e
)N , then V ol(P (x)) ≥ 1 − 1

√

2πN 2N

for all N ≥ 2 .
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Bounds whenF = u(0, 1)

We prove lemmas about V ol(P (x)) that help to
decompose the expectation integral.

For Example,
if the volume outside P (x) is asymptotically small then
x must be sufficiently large.

Lemma :
If V ol(P (x)) > 1 − N

2N , then x >
(

1 − 1
4
(2N)1/N

)

N

for all N ≥ 2 .
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Bounds whenF = u(0, 1)

Theorem : For all N ≥ 2 , K = N − 1 ,
(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)2N
)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

lim
N→∞

Var[XN,K ] ≤ 7
16− 1

e

(

1 − 1
2e

)

≈ 0.1373
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Bounds whenF = u(0, 1)

Theorem : For all N ≥ 2 , K = N − 1 ,
(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)2N
)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

lim
N→∞

Var[XN,K ] ≤ 7
16− 1

e

(

1 − 1
2e

)

≈ 0.1373

Theorem : For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)
2
N

cN

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N
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)
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Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)4 2
βN

N

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N
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Theorem : For all N ≥ 2 , K = N − 1 ,
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lim
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(

1 − 1
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)

≈ 0.1373

Theorem : For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)
2
N

cN

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)4 2
βN

N

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

Tight bounds on E[XN,K ] valid for all N and for K close to N
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Bounds whenF = u(0, 1)
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)
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)2N
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Theorem : For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

(

1− 1
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)

(

1−
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)
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N
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)
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2πN 2N

)2N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)4 2
βN

N

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

Leading Coefficients : 1 − 1
4 = 0.75 and 1 − 1

2e
≈ 0.816

Kauffman NK Model – p.34/36



Bounds whenF = u(0, 1)

Theorem : For all N ≥ 2 , K = N − 1 ,
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1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)2N
)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

lim
N→∞
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16− 1

e

(

1 − 1
2e

)

≈ 0.1373

Theorem : For all N ≥ 2 , K = N−α , α ∈ Z
+, α ≥ 2, c = α − 2

(
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)

(

1−
(
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2N

)
2
N

cN

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

Theorem : For all N ≥ 2 , K = βN , β ∈ (0, 1)

(

1− 1
4(2N)1/N

)

(

1−
(

1− N
2N

)4 2
βN

N

)

≤ E[XN,K ] ≤ 1− 1
2e

(

1− 1√
2πN 2N

)2N

Proofs use the previous Theorems and the geometric lemmas .
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Concentration of XN,K around E[XN,K ]

Probability of XN,K being far from E[XN,K ] is
exponentially decaying.

Theorem : If F is a bounded distribution such that
X ∼ F ⇒ |X| ≤ c, then

P[ | XN,K − E[XN,K ] | ≥ t ] ≤ 2 exp
(

− 2Nt2

c222N −K−1

)
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Concentration of XN,K around E[XN,K ]

Probability of XN,K being far from E[XN,K ] is
exponentially decaying.

Theorem : If F is a bounded distribution such that
X ∼ F ⇒ |X| ≤ c, then

P[ | XN,K − E[XN,K ] | ≥ t ] ≤ 2 exp
(

− 2Nt2

c222N −K−1

)

Proof using Independent Bounded Differences Inequality, a variant of

Azuma’s Martingale inequality.
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The Kauffman NK Model

Background and Applications

Mathematical Description

NK Model as a Stochastic Network

Computational Strategies using Stochastic
Networks

Dependency Graph and Bounds on Order Statistics

Analysis for underlying Normal Distribution

Analysis for underlying Uniform Distribution

Concentration of Measure

Thank You !
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