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I Introduction

We want to model systems composed of several
Interacting components, where each component
can be in one of many possible states.

Objective : Maximize a measure of performance of
the system based on contributions from each
component, depending on the state of the
component and its ‘interaction’ with its neighbors.

—



I Background

In 1987, Kauffman and Levin introduced
The NK model
#» N counts the number of components in the system

» K measures the ‘degree’ of interaction between
components
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I Background

In 1987, Kauffman and Levin introduced
The NK model
#» N counts the number of components in the system

» K measures the ‘degree’ of interaction between
components

The NK model was originally proposed to study the
evolution of genomes.

# system = genome # states = gene mutations
# components = genes # performance measure

= fithess |



I Applications |

# In Biology

s Mmaturation of Immune response
s evolution of protein or RNA sequences

s Mmolecular quasi-species

#» For example, an antibody (system) is a collection of
amino acid sites (components) with each site
containing one of twenty amino acids (states), then
the affinity (performance measure) of an antibody
for a particular antigen depends on how the chosen

amino acids interact with each other. |



I Applications Il

# In Physics and Management Science

s Spin glasses
» effectiveness of a project team
s process of organizational change

#» For example, a spin glass is defined as a system
consisting of contiguous atoms (components). For
each atom, it is possible to select a spin up or spin
down (states). The total energy (performance
measure) depends on how the selected spins

Interact. The objective Is to choose spins so that
the energy Is minimized. |



I Mathematical Description

System — A vector with N components, each of which

can be in one of p possible states.
x = (zg,...,on—1), With z; € {0,1,2,...,p— 1} and the
numbers 0.1,2,...,p — 1 used as labels for the states.

B
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System — A vector with N components, each of which
can be in one of 2 possible states.

x = (g, ...,on_1), WIth z; € {0,1} and the numbers 0, 1
used as labels for the states.



I Mathematical Description

System — A vector with N components, each of which
can be in one of 2 possible states.

x = (g, ...,on_1), WIth z; € {0,1} and the numbers 0, 1
used as labels for the states.

Performance Measure —

N—-1

B(x) = + 3 6i(x)

1=0

¢;(x) IS the performance contribution from each

component s.
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I Performance Measure

Performance Measure —

N—-1

B(x) = 1 3 6i(x)

1=0

¢;, the contribution of component ; to the overall
performance of the system depends on
# Its own state, and

# the states of K ‘neighboring’ components.

—



I Performance Measure

and

System((0,1,1,0, 1, 0)
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I Performance Measure - Definition, Exampl

qD(X) - % Zi\igl ¢Z<$27 e 7$i—|—K)

where arithmetic in the subscripts is done modulo N and ¢; are
N distinct real-valued functions on {0, 1}# 1,
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qD(X) - % Zi\igl ¢Z<$27 e 7$i—|—K)

where arithmetic in the subscripts is done modulo N and ¢; are
N distinct real-valued functions on {0, 1}# 1,

N =4and K =2

®(0,1,1,0) = 1[¢0(0,1,1) + ¢1(1,1,0) + .. ]
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qD(X) - % Zi\igl ¢Z<$27 e 7$i—|—K)

where arithmetic in the subscripts is done modulo N and ¢; are
N distinct real-valued functions on {0, 1}# 1,

N =4and K =2

®(0,1,1,0) = +[¢0(0,1,1) + ¢1(1,1,0) + ¢2(1,0,0) + ..
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I Performance Measure - Definition, Exampl

qD(X) - % Zi\igl ¢Z<$27 e 7$i—|—K)

where arithmetic in the subscripts is done modulo N and ¢; are
N distinct real-valued functions on {0, 1}# 1,

N =4and K =2

$(0,1,1,0)=%[¢0(0,1,1)+¢1(1,1,0) + ¢2(1,0,0)+¢3(0,0, 1)]

—



I Performance Measure - Definition, Exampl

qD(X) - % Zi\igl ¢Z<$27 e 7$i—|—K)

where arithmetic in the subscripts is done modulo N and ¢; are
N distinct real-valued functions on {0, 1}# 1,

N =4and K =2

(I)(Oa 1,1, O) — i[gbO(Oa 1L, 1)+¢1(17 1L, O)+¢2(17 0, O)+¢3(Oa 0, 1)]

—



I Overlap

Given N, K, 0< K<N-1,and
d; {0,185 SR, i=0,1,...,N—1

How can we find a system with the best possible
performance ?

max{®(x) | x € {0,1}V}

—



I Overlap

and
2V = 24 = 16 possible systems



I Overlap

N=4and K =2
2V = 24 = 16 possible systems

$(0,0,0,0)=%[¢0(0,0,0)+¢1(0,0,0)+¢2(0,0,0)+¢3(0,0,0)]
$(0,0,1,0)=%[d0(0,0,1)+¢1(0,1,0)+a2(1,0,0)+¢3(0,0,0)
®(0,1,1,0)=1[d0(0,1, 1)+¢1(1,1,0)+d2(1,0,0)+¢3(0,0,1)
®(0,1,1,1)=1[po(0,1,1)+¢1(1,1,1)+p2(1,1,0)+¢p3(1,0,1)]
O(1,1,1,1)=1[po(1,1,1)+p1(1,1,1)+p2(1,1,1)+p3(1,1,1)]
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I Central Question

Given N, K, 0< K <N-1,and
d; {0,185 SR, i=0,1,...,N—1

What can we say about the Global Optima, the system
that maximizes the value of the performance measure?

max{®(x) | x € {0,1}V}
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I Central Question

Given N, K, 0< K <N-1,and
g; - {0, 15 SR i=0,1,...,N—1

What can we say about the Global Optima, the system
that maximizes the value of the performance measure?

max{®(x) | x € {0,1}V}

#» NP-complete problem.

# In applications it is difficult, if not impossible, to
determine the values taken by ¢;.

So, this combinatorial optimization problem is formulated
and studied probabilistically. |



I Probability and Optimization |

Generate values of ¢;(.) stochastically.

For real-life scenarios in which the functions ¢; are not
deterministically known, a universally adopted
approach is to generate for each ¢;(.) a random
number based on a probability distribution F.

This Is analogous to replacing a “weight” in a
combinatorial optimization model with a random
variable, to better model uncertainty.

This Is an idea inherent in Stochastic Programming.

—



I Probability and Optimization |

“Average behavior” — Intractable combinatorial
optimization problems are often studied probabilistically
by introducing some notion of a random instance.

For example, in stochastic Traveling Salesman Problem
(TSP), the distances (“weights”) between the vertices
of a graph are replaced by i.i.d uniform random
variables. Replace ¢;(.) with random variables.

This Is an idea inherent in Probabilistic Combinatorial

Optimization.



I Probabilistic Question

Given N, K, with0 < K < N — 1, and N25*! random
variables ¢;(y) for y € {0,1}%*! | i=0,1,...,N—1,
Independently and identically distributed as F.

Study the distribution of the global optima —

Xnx = max{®(x) | x € {0,1}}

—

where ®(x) = & SV P oi(a, . mik).



I Overlap

N=4and K =2
2V = 24 = 16 possible systems

$(0,0,0,0)=%[¢0(0,0,0)+¢1(0,0,0)+e¢2(0,0,0)+¢3(0,0,0)]
$(0,0,1,0)=1[p0(0,0,1)+¢1(0,1,0)+ +¢3(0,0,0)
®(0,1,1,0)=1[po(0,1,1)+¢1(1,1,0)+ +¢3(0,0,1)
®(0,1,1,1)=1[po(0,1,1)+ +o(1,1,0)+¢p3(1,0,1)
®(1,1,1,1)=x[po(1,1,1)+ +o(1,1,1)+¢3(1,1,1)]

B
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I Previous Research

Research Question— How do the varying values of N
and K affect the performance of the systems?

#» Mostly study of local optima w.r.t. a Hamming
distance based neighborhood structure.

#» Mostly simulation-based results and applications.
#» Solow et. al (2000) showed the global decision

problem is NP-complete.



I Previous Research

# Evans and Steinsaltz (2002)

o convert to an infinite-dimensional variational
problem

s explicit bounds only when K =1 and F'Is
exponential distribution
# Durrett and Limic (2003)
s use the theory of substochastic Harris chains

s explicit bounds only when K=1 and F'Is
negative exponential distribution

#» Numerous other papers (both Applications and

Theory). |



I Our Focus

StUdy XN,K — maX{(I)(X) ‘ X & {O, 1}N}

# Develop a simple computational set-up,
Independent of the underlying distribution F

—
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moments of Xy x, independent of the underlying

distribution F
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underlying distributions like uniform and normal.
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I Our Focus

#» Develop a simple computational set-up,
Independent of the underlying distribution F

#» Develop methodology for finding bounds on the
moments of Xy x, Independent of the underlying
distribution F

» Find explicit bounds on the expectation of Xy g

when K is function of N, for fundamental
underlying distributions like uniform and normal.

# Show concentration of Xy x around its mean, Ey g

We use tools from Combinatorics and Graph Theory,

Networks, Probability and Statistics, and Geometry. |



I N K model as a Stochastic Network

Network D x oR T (V 4+ 1) array of vertices,

ol te {0,135 0<i< N
each vertex, v¢, corresponds to component ; and t, the
state vector for the component and its K neighbors.
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I N K model as a Stochastic Network

Network D x oR T (V 4+ 1) array of vertices,

ol te {0,135 0<i< N
each vertex, v¢, corresponds to component ; and t, the
state vector for the component and its K neighbors.

ldea — Create a correspondence between the systems
and the directed paths in this network.

v vl e j=i+1and =t i=1.. . K
and tAK+1 c {O, 1}

Each v has a weight generated by the performance

contribution (and random variable) ¢;(t). |
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N=4and K =1
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I Network DN,K

N=4and K =1

1= 0 1 2 3 4
t =00

01
10
11

Green path corresponds to the system {0, 0, 1,0} and the

weight of the path is the performance measure of this

system. |



I Network DN,K

N=4and K =1

Green path corresponds to the system {0, 0, 1,0} and the weight of the
path is the performance measure of the system.

Each directed path from from v} to v
and Its associated weight

) |
Each system and its performance



I SubNetwork Dy,

DY . = subnetwork of Dy i defined by all the directed
paths between + and v
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paths between + and v

1= 0 1 2 3 4
t =00

Ole
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I SubNetwork Dy,

DY . = subnetwork of Dy i defined by all the directed
paths between + and v

I% i = rv. for maximum weight of a directed path in D},

—



I SubNetwork Dy,

DY, . = subnetwork of Dy i defined by all the directed
paths between + and v

Since each of the 25+1 subnetworks has identical
structure, each [%; .- is identically distributed.

Inc = common r.v. for each Ij,
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I SubNetwork Dy,

DY, . = subnetwork of Dy i defined by all the directed
paths between + and v

Since each of the 25+1 subnetworks has identical
structure, each [%; .- is identically distributed.

Inc = common r.v. for each Ij,

o8+ identically distributed IN K}

—

XN,K — % max{



I SubNetwork Dy,

DY, . = subnetwork of Dy i defined by all the directed
paths between + and v

v = common r.v. for each I
XN K = % max {28+ identically distributed IN K }

Xy i = = max{2" identically distributed ®(x)}

— Order Statistics

— Project Duration in PERT networks |



I Computational Strategy for K close toN

Observation — The value of N— K determines the
general structure of subnetwork DY, .., while N

determines Iits size.

=0 1 2 3 4 i— 0 1 2 13
t =000 DY S—-— t =00 . be
001
010 01
100 10
N=4, K=2 N=3, K=1

Subnetwork DY, - for N— K =2

—



I Computational Strategy for K close toN

This leads to —

Foreach K, 1 < K < N — 3,

INnk = X + max {two identically distributed In_1 i} ,
where the boundary conditions are
ZK+27K = X 4+ max {two 1.2.d. lK—i—l,K}; X ~F
N
ke = » Xi, {X}idid F
1=1

Each recursive step reduces the value of N and brings

It closer to the (fixed) value of K, until N = K + 1. |



I Dy g —Computational Strategy for small K

/

Dy = Network formed from Dy g by deleting the
vertices in the K +1 columns from N — K to N and

adding a source and a sink

1= 0 1 2 3 4 1 =0 1 2
t =00
01
S t
10
11
N=4,K=1 DN,K D;VK



I Dy g —Computational Strategy for small K

D;V,K = Network formed from Dy x by deleting the

vertices in the K+1 columns from N — K to N and
adding a source and a sink

Each directed path in Dy .- corresponds to a unique
system, but not all feasible systems are represented by
a path in Dy .

B



I Dy g —Computational Strategy for small K

D;V,K = Network formed from Dy i by deleting the

vertices in the K+1 columns from N — K to N and
adding a source and a sink

Each directed path in Dy .- corresponds to a unique

system, but not all feasible systems are represented by
a pathin D) .

XN,KZ% ZNK + ZZ_N KX} ., X;t10.d. F

Iy = maximum weight of a directed path in D ;.

B
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Dy » = Network formed from Dy x by deleting the
vertices in column N and adding a source and a sink
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I Dy g —Computational Strategy for small K

/!

Dy - = Network formed from Dy g by deleting the
vertices in column N and adding a source and a sink

Each feasible system corresponds to a unigue directed
path in D}’V  » but not all directed paths represent a
system.

1! .

[y » = maximum weight of a directed path in D

—



I Dy gand Dy .

e

N=4,6 K=1 NK NK

Dy i has N — K columns and Dy ;- has N columns.

For fixed K, the bounds in terms of I, .- and I, - will be

asymptotically tight. |
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I Dependency Graph

Dependence between ®(x) and ®(y) , x,y € {0,1}V
(%) = § Lisy dili- - Tivk)
Oly) = %S00 iy Yirk)

¢(x) and ®(y) are dependent <
there exists ¢ suchthatz; =y;fori <j; <i+ K

G n x = dependency graph for given N, K

vertices = x € {0, 1}

x « y < &(x) and ¢(y) are dependent |
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® (i has 2V vertices, one for each system.

#» An edge between two vertices means there Is
dependence between the performance measures
of the corresponding systems.



I Dependency Graph, contd.

® Gy has 2V vertices, one for each system.

# An edge between two vertices means there is
dependence between the performance measures
of the corresponding systems.

» Want to partition the vertex set of Gy  ,
V(GN’K) =ViuVouU...UV;, such that

- there are no edges within each class V;

- sizes of any two classes differ by at most 1

I



I Dependency Graph, contd.

Want to partition the vertex set of G x
V(GN’K) =ViuVouu...UV;, such that

- there are no edges within each class V;

- sizes of any two classes differ by at most 1

t-equitable coloring of Gy x

—



I Dependency Graph, contd.

Want to partition the vertex set of G x
V(GN’K) =ViuVouu...UV;, such that

- there are no edges within each class V;

- sizes of any two classes differ by at most 1

t-equitable coloring of Gy x

Theorem : A(Gy k) < N2N¥~E~2for all K, with equality
for 5 < K <N —2.

A(G) = maximum degree, the most number of vertices that are

adjacent to a vertex in GG |



I Dependency Graph, contd.

Want to partition the vertex set of G x ,
V(GN’K) =ViuVouu...UV;, such that

- there are no edges within each class V;

- sizes of any two classes differ by at most 1

t-equitable coloring of Gy x

Theorem : A(Gy k) < N2N¥~E~2for all K, with equality
for 5 < K <N —2.

Theorem : Gy i has a t-equitable coloring if ¢t > N2V —8—2

—



I Dependency Graph, contd.

Want to partition the vertex set of G x ,
V(GN’K) =ViuVouu...UV;, such that

- there are no edges within each class V;

- sizes of any two classes differ by at most 1

t-equitable coloring of Gy x

Theorem : A(Gy k) < N2N¥~E~2for all K, with equality
for 5 < K <N —2.

Theorem : Gy i has a t-equitable coloring if ¢t > N2V —8—2

How Is this useful? |
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I Bounds on Order Statistics

Notation : Y}, = max{Y1,...,¥,}

Fy = distribution of "V, X;, for X; ii.d. F

1
XNK = Nmax{2N identically distributed ®(x) }

N
1
=  — max{2" identically distributed Z i}, {oiti.i.d. F

1=1

max{2" identically distributed ®(x)}, ®(x) ~ Fy

z2l—z2l- =

Yiony, Vi~ Fy 5 {Yili=1,,...,2"} = {®(x) |z € {0, 1}"}

—
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I Bounds on Order Statistics

Notation : Y}, = max{Y1,...,¥,}
Fy = distribution of "V, X;, for X; ii.d. F
XNk =7 Ypany, Yi~ Fy 5 {Y;} = {®(x)} dependent

Theorem : For all N, K, with underlying distribution F, if
G v i has t-equitable coloring then

E[Y[QN/t]] <E[XnK] < E[Y[zN/t]] + \/t Var[Y[zN/t]]

—

where Yi,..., Y 1.1.d. Fy.



I Bounds on Order Statistics

Notation : Y}, = max{Y1,...,¥,}
Fy = distribution of "V, X;, for X; ii.d. F

XNk =7 Ypany, Yi~ Fy 5 {Y;} = {®(x)} dependent

Theorem : For all N, K, with underlying distribution F,
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I Bounds on Order Statistics

Notation : Y}, = max{Y1,...,¥,}
Fy = distribution of "V, X;, for X; ii.d. F

XNk =7 Ypany, Yi~ Fy 5 {Y;} = {®(x)} dependent

Theorem : For all N, K, with underlying distribution F,

ED/[QK‘FQ/N]} S E[XNJ(] S E[}/V[QK+2/N]}‘|—\/N2N_ _2Var[Y[2K+2/N]]

where Y7,...,Y, iid. Fy.

Proofs use tools from Order Statistics and the Equitable Coloring of
Graphs. |



I Order Statistics with Dependencies

A dependency graph for random variables X, ..., X,
G(X1,...,X,), has vertex set [n] and an edge set such
that for each i € [n], X; Is mutually independent of all
other X, such that {7, j} IS not an edge.

Y, = max {Yi,...,Y,}

Theorem : Let X4,..., X, be identically distributed
random variables with distribution F. If G(X1, ..., X})
has a t-equitable coloring, then

EY},q] < E[Xy| <E[Y), ]+ \/(t — 1) Var[Y}, 4]

where Y1, ..., Y, ii.d. F . _l



I Order Statistics with Dependencies

Theorem : Let X4,..., X, be identically distributed
(dependent) random variables with distribution F. If
G(X4,...,X,) has a t-equitable coloring, then

E[Y[n/t]] < E[X[n]] < E[Y[n/t]] + \/(t - 1) Var[Y[n/t]]
where Y7,...,Y, i.2.d. I .

Convert the problem of bounding order statistics of
dependent random variables into that of independent
random variables while incorporating quantitative
Information about the mutual dependencies between

the original random variables |
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Theorem :Forall N > 2, K =N —1,

VZTog2 - 20 < E[Xyk] < \/(1+ £)2log2 — 24

Theorem :Forall N >2, K =N—-a,aca€Z", a>2, c=a —2

\/(1—%)210g2—2kj’§N (z/<1_)<E[XNK] \/(1—|— )ZIOgQ—%

Theorem: Forall N > 2, K =N, 3 € (0,1)
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Bounds whenF' = N(0, 1)

Theorem :Forall N > 2, K =N —1,

VZTog2 - 20 < E[Xyk] < \/(1+ £)2log2 — 24

Theorem :Forall N >2, K =N—-a,aca€Z", a>2, c=a —2

\/(1—%)210g2—213§N (z/<1_)<E[XNK] \/(1—|— )2105’52_%

Theorem: Forall N > 2, K =N, 3 € (0,1)

\/(5+%>210g2 _ 2logN _ (j/(lﬁ) <EXnk]| < \/(1+%)210g2 . L\/lﬁ)

Tight bounds on E[X y x| valid for all N and for K close to N |



Bounds whenF' = N(0, 1)

Theorem :Forall N > 2, K =N —1,

VZTog2 - 20 < E[Xyk] < \/(1+ £)2log2 — 24

Theorem :Forall N >2, K =N—-a,aca€Z", a>2, c=a —2

\/(1—%)210g2—2kj’§N (z/<1_)<E[XNK] \/(1—|— )2105’52_%

Theorem: Forall N > 2, K =N, 3 € (0,1)

\/(ﬂ+%>210g2 _ 2logN _ (j/(lﬁ) <EXnk]| < \/(1+%)210g2 . L\/lﬁ)

Leading Coefficients in both upper and lower bounds are equal to /2 log 2 |



Bounds whenF' = N(0, 1)

Theorem :Forall N > 2, K =N —1,

VZTog2 - 20 < E[Xyk] < \/(1+ £)2log2 — 24

Theorem :Forall N >2, K =N—-a,aca€Z", a>2, c=a —2

\/(1—%)210g2—213§N (z/<1_)<E[XNK] \/(1—|— )2105’52_%

Theorem: Forall N > 2, K =N, 3 € (0,1)

\/(5+%>210g2 _ 2logN _ (j/(lﬁ) <EXnk]| < \/(1+%)210g2 . L\/lﬁ)

Proofs use the previous Theorems and the properties of Normal |
Distribution & its order statistics



Bounds whenF = U(0, 1)

# “Sum of Normals is Normal™!

# Sum of Uniforms does not have a nice distribution.

Need to find an alternate description of the Distribution
of sum of Uniforms !

—



Bounds whenF = U(0, 1)

When {X;}i.i.d. U(0,1),
N

Pr { >, X; < a:} IS equal to the volume of
j=1

( )

N
Plz)={yeR"| Zngxandogngu
j=1

\ /

a subset of the N-dimensional hypercube [0, 1] .

—



Bounds whenF = U(0, 1)

We prove lemmas about that help to
decompose the expectation integral.



Bounds whenF = U(0, 1)

We prove lemmas about Vol( P(x)) that help to
decompose the expectation integral.

For Example,
a lower bound on x that forces the volume of P(z) to
approach 1, the volume of the [0,1]" cube, very rapidly.

Lemma:
Ifz > (1— 5)N,then Vol(P(z)) > 1~ —rx
forall N > 2.

—



Bounds whenF = U(0, 1)

We prove lemmas about Vol( P(x)) that help to
decompose the expectation integral.

For Example,

If the volume outside P(x) Is asymptotically small then
r must be sufficiently large.

Lemma :
If Vol(P(x)) > 1 — zﬁN ,then z > (1 — i(ZN)l/N)N
forall N > 2.

—



Bounds . whenF = U(0, 1)

Theorem: Forall N >2, K =N -1,

(1_%2]\[)1/]\7) (1—(1—2%)2]\7) <E[XnyEK| < 1_2_16 (1_\/ﬁ2N)

lim Var[Xyg] <-£—-1 (1—2)~0.1373

2N

N —o00 €
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Theorem: Forall N >2, K =N -1,

(1-1@N)YN) (1-(1-5)") < BlXyx] < 1-4

A}im Var| Xy k| < %—% (1-2) ~0.1373
Theorem: Forall N >2, K =N—-a,a€Z", a>2, c=a—2

oIV

(=320 (1087 ) < Blwad < 1-3 (1- 7o)

2N
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Bounds whenF = U(0, 1)

Theorem: Forall N >2, K =N -1,

(1-1@N)YN) (1-(1-5)") < BlXyx] < 1-4

. 7 1 1\ ~
Jim Var[Xy k] < 153 (1—55) ~0.1373
Theorem: Forall N >2, K =N—-a,a€Z", a>2, c=a—2

oIV

(=320 (1087 ) < Blwad < 1-3 (1- 7o)

2N

Theorem: Forall N > 2, K =N, 3 € (0,1)

26N

(1-72N)VY) (1—(1—%)4 v > < EB[Xvxd <15 (1= 75w )

—

2N




Bounds whenF = U(0, 1)

Theorem: Forall N >2, K =N -1,

(1—-3(2N)VY) (1_(1—%)2N) <E[Xyx]<1-5

. 7 1 1\ ~
Jim Var[Xy k] < 153 (1—55) ~0.1373
Theorem: Forall N >2, K=N—-a,a€Z", a>2, c=a—2

oIV

(=320 (1087 ) < Blwad < 1-3 (1- 7o)

2N

Theorem: Forall N > 2, K =N, 3 € (0,1)

(1—1(2N)Y/N) (1—(1—2%)42BTN> <EXyx]<1-5 (1— L )

2N

2w N 2N

Tight bounds on E[X y x| valid for all N and for K close to N |



Bounds whenF = U(0, 1)

Theorem: Forall N >2, K =N -1,

(1—-3(2N)VY) (1_(1—%)2N) <E[Xyx]<1-5

A}im Var| Xy k| < %—% (1-2) ~0.1373
Theorem: Forall N >2, K=N—-a,a€Z", a>2, c=a—2

oIV

(=320 (1087 ) < Blwad < 1-3 (1- 7o)

2N

Theorem: Forall N > 2, K =N, 3 € (0,1)

(1—1(2N)Y/N) (1—(1—2%)42BTN> <EXyx]<1-5 (1— L )

2N

2w N 2N

Leading Coefficients : 1 — + = 0.75and 1 — o~ ~ 0.816 |



Bounds whenF = U(0, 1)

Theorem: Forall N >2, K =N -1,

(1—-3(2N)VY) (1_(1—%)2N) <E[Xyx]<1-5

. 7 1 1\ ~
Jim Var[Xy k] < 153 (1—55) ~0.1373
Theorem: Forall N >2, K=N—-a,a€Z", a>2, c=a—2

oIV

(=320 (1087 ) < Blwad < 1-3 (1- 7o)

2N

Theorem: Forall N > 2, K =N, 3 € (0,1)

(1—1(2N)Y/N) (1—(1—2%)42BTN> <EXyx]<1-5 (1— L )

2N

2w N 2N

Proofs use the previous Theorems and the geometric lemmas . |



I Concentration of Xy ;- around E| X y x|

Probability of X x being far from E[ Xy ] IS
exponentially decaying.

Theorem : If F is a bounded distribution such that
X ~ F = |X| <¢ then
2N t2 )

P[ |XN,K — E[XN,K] | Z t] S 2 exp (_szzN—K—1

—



I Concentration of Xy ;- around E| X y x|

Probability of X x being far from E[ Xy ] IS
exponentially decaying.

Theorem : If F is a bounded distribution such that
X ~ F = |X| <¢ then
2N t2 )

P[ |XN,K — E[XN,K] | Z t] S 2 exp (_szzN—K—1

Proof using Independent Bounded Differences Inequality, a variant of

—

Azuma’s Martingale inequality.



I The Kauffman N K Model

Background and Applications
Mathematical Description
N K Model as a Stochastic Network

Computational Strategies using Stochastic
Networks

© o o 0

Dependency Graph and Bounds on Order Statistics
Analysis for underlying Normal Distribution
Analysis for underlying Uniform Distribution

® o o ©

Concentration of Measure

Thank You ! |
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