Polynomials and DP Colorings of Graphs

Hemanshu Kaul

Illinois Institute of Technology
www.math.iit.edu/~kaul
kaul@iit.edu

Joint work with
Jeffrey Mudrock (College of Lake County)

Co-authors

- Jack Becker, CLC (undergrad), DePaul (MS).
- Vu Bui, CLC (undergrad).
- Charlie Halberg, CLC \& Utah (undergrad).
- Jade Hewitt, CLC \& IIT (undergrad)
- Akash Kumar, CLC (undergrad).
- Andrew Liu, Stevenson H. S., CLC \& MIT (undergrad).
- Michael Maxfield, CLC \& Wisconsin-Madison (undergrad).
- Patrick Rewers, CLC \& Purdue (undergrad).
- Paul Shin, Stevenson H. S., CLC \& Dartmouth (undergrad).
- Seth Thomason, CLC \& SIU (undergrad)
- Khue To, CLC (undergrad).
- Tim Wagstrom, CLC \& UIC (undergrad), URI (PhD).

Co-authors

- Daniel Dominik, IIT (PhD).
- Gunjan Sharma, IIT (PhD).
- Quinn Stratton, IIT (MS).
- Samantha Dahlberg, IIT(postdoc).
- Anton Bernshteyn, Georgia Tech.

Graph Coloring

- Color vertices so that any vertices with an edge between them must get different colors.
- A proper m-coloring of a graph G is a labeling $c: V(G) \rightarrow[m]$, such that $c(u) \neq c(v)$ whenever u and v are adjacent in G.
- Minimum number of colors needed for such a coloring is called the chromatic number $\chi(G)$ of the graph G.
- Each vertex has the same list of colors $[m]$ available to it.

List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.

List Coloring

- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. If all the lists associated with the list assignment L have size m, we say that L is an m-assignment.
- An L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.
- When an L-coloring for G exists, we say that G is L-colorable or L-choosable.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest m such that G is L-colorable whenever $|L(v)| \geq m$ for each $v \in V(G)$.

List Chromatic Number

- The list chromatic number of a graph G, written $\chi_{\ell}(G)$, is the smallest m such that G is L-colorable whenever $|L(v)| \geq m$ for each $v \in V(G)$.
- Since usual coloring corresponds to a constant list assignment,

$$
\chi(G) \leq \chi_{\ell}(G)
$$

- The gap between $\chi(G)$ and $\chi_{\ell}(G)$ can be arbitrarily large: $\chi_{\ell}\left(K_{k, t}\right)=k+1$ iff $t \geq k^{k}$.

${\underset{v i n}{ } \rightarrow 2}_{\text {Proper } L \text {-coloring }}^{v_{1} \rightarrow 2}$
$v_{1} \rightarrow 2$
$v_{3} \rightarrow 3$
$\mathrm{U}_{4} \rightarrow 1$

A Different Perspective

Independent set \& size 4 here. $2 \varepsilon L\left(v_{1}\right), 1 \varepsilon L\left(v_{2}\right)$, $3 \varepsilon L\left(v_{3}\right), 1 \varepsilon L\left(v_{4}\right)$

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring) of graphs.
- Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. Each vertex still gets a list of colors but identification of which colors are different can vary from edge to edge.

DP-Coloring

- In 2015, Dvořák and Postle introduced DP-coloring (they called it correspondence coloring) of graphs.
- Intuitively, DP-coloring considers the worst-case scenario of how many colors we need in the lists if we no longer can identify the names of the colors. Each vertex still gets a list of colors but identification of which colors are different can vary from edge to edge.
- A (DP-)cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) the set $\{L(u): u \in V(G)\}$ is a partition of $V(H)$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching (the matching may be empty).

(DP-) Cover of a Graph

- A cover of G is a pair $\mathcal{H}=(L, H)$ consisting of a graph H and a function $L: V(G) \rightarrow \mathcal{P}(V(H))$ satisfying:
(1) the set $\{L(u): u \in V(G)\}$ is a partition of $V(H)$;
(2) for every $u \in V(G)$, the graph $H[L(u)]$ is complete;
(3) if $E_{H}(L(u), L(v))$ is nonempty, then $u=v$ or $u v \in E(G)$;
(4) if $u v \in E(G)$, then $E_{H}(L(u), L(v))$ is a matching (the matching may be empty).
- See also "covering graphs", "Lifts". Studied since 1990s.
- Intuition:

Blow up each vertex u in G into a clique of size $|L(u)|$; Add a matching (possibly empty) between any two such cliques for vertices u and v if $u v$ is an edge in G.

(DP-) Cover of a Graph

- Intuition:

Blow up each vertex u in G into a clique of size $|L(u)|$; Add a matching (possibly empty) between any two such cliques for vertices u and v if $u v$ is an edge in G.

- A cover $\mathcal{H}=(L, H)$ is called m-fold if $|L(u)|=m$ for all u.
- Two 2-fold covers of C_{4} :

DP-Chromatic Number of a Graph

- Given $\mathcal{H}=(L, H)$, a cover of G, an \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$. Equivalently, an independent transversal in \mathcal{H}.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest m such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.

DP-Chromatic Number of a Graph

- Given $\mathcal{H}=(L, H)$, a cover of G, an \mathcal{H}-coloring of G is an independent set in H of size $|V(G)|$.
- The DP-chromatic number of a graph $G, \chi_{D P}(G)$, is the smallest m such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.
- $\chi_{D P}\left(C_{4}\right)>2=\chi_{\ell}\left(C_{4}\right)$:

No independent set of size 4 in this 2 -fold cover g C_{4}

DP-Coloring and List Coloring

- Given an m-assignment, L, for a graph G, it is easy to construct an m-fold cover \mathcal{H} of G such that:
G has an \mathcal{H}-coloring if and only if G has a proper L-coloring.

L-colosing

H-cotoring

- $\chi(G) \leq \chi_{\ell}(G) \leq \chi_{D P}(G)$.

The Chromatic Polynomial

- Birkhoff 1912: For $m \in \mathbb{N}$, let $P(G, m)$ denote the number of proper colorings of G where the colors used come from $\{1, \ldots, m\}$.
- $P(G, m)$ is a polynomial in m of degree $|V(G)|$. We call $P(G, m)$ the chromatic polynomial of G.
- Explored deeply and widely in the past 100 years, and generalized in many different ways.

The List Color Function

- $P(G, L)$ be the number of proper L-colorings of G.
- Kostochka and Sidorenko 1990: The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.

The List Color Function

- $P(G, L)$ be the number of proper L-colorings of G.
- Kostochka and Sidorenko 1990: The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.
- $P\left(K_{2,4}, 2\right)=2$, and yet $P_{\ell}\left(K_{2,4}, 2\right)=0$.
- $P_{\ell}\left(K_{3,26}, 3\right) \leq 3^{8} 2^{12}<3^{1} 2^{26} \leq P\left(K_{3,26}, 3\right)$.

The List Color Function

- $P(G, L)$ be the number of proper L-colorings of G.
- Kostochka and Sidorenko 1990: The list color function $P_{\ell}(G, m)$ is the minimum value of $P(G, L)$ over all possible m-assignments L for G.
- In general, $P_{\ell}(G, m) \leq P(G, m)$.

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi (2016); K., Mudrock (2021))

1) $P_{\ell}(G, m)=P(G, m)$ for all m, if G is chordal.
2) $P_{\ell}\left(C_{n}, m\right)=P\left(C_{n}, m\right)=(m-1)^{n}+(-1)^{n}(m-1)$ for all m.
3) $P_{\ell}\left(C_{n} \vee K_{k}, m\right)=P\left(C_{n} \vee K_{k}, m\right)$ for all m.

The List Color Function

- $P_{\ell}(G, m) \leq P(G, m)$. And for some $G, P_{\ell}(G, m)<P(G, m)$
- $P_{\ell}(G, m)$ need not be a polynomial, but it will equal the chromatic polynomial ultimately.

Theorem (Dong, Zhang (2022+); improving Wang, Qian, Yan (2017), Thomassen (2009), Donner (1992), question of Kostochka \& Sidorenko (1990))
For any connected graph G with t edges, $P_{\ell}(G, m)=P(G, m)$ for $m>t-1$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph $G, P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.

- K. and Mudrock 2021: The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.

- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph $G, P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- K. and Mudrock 2021: The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.

The DP Color Function

- For $\mathcal{H}=(L, H)$, a cover of graph $G, P_{D P}(G, \mathcal{H})$ be the number of \mathcal{H}-colorings of G.
- K. and Mudrock 2021: The DP color function, $P_{D P}(G, m)$, is the minimum value of $P_{D P}(G, \mathcal{H})$ where the minimum is taken over all possible m-fold covers \mathcal{H} of G.
- $P\left(C_{4}, 2\right)=P_{\ell}\left(C_{4}, 2\right)=2$, and yet $P_{D P}\left(C_{4}, 2\right)=0$.
- In general, $P_{D P}(G, m) \leq P_{\ell}(G, m) \leq P(G, m)$.

How is DP Color Function useful?

- Guaranteed number of DP-colorings regardless of the cover being used.

How is DP Color Function useful?

- Lower bound on both $P_{\ell}(G, m)$ and $P(G, m)$.

Theorem (Bernshteyn, Brazelton, Cao, Kang (2023))
For any triangle-free graph G with n vertices, t edges, $\Delta(G)$ large enough, and $m>(1+o(1)) \Delta(G) / \log \Delta(G)$, $P_{D P}(G, m) \geq(1-\delta)^{n}\left(1-\frac{1}{m}\right)^{t} m^{n}$.

How is DP Color Function useful?

- Lower bound on both $P_{\ell}(G, m)$ and $P(G, m)$.

Theorem (Bernshteyn, Brazelton, Cao, Kang (2023))
For any triangle-free graph G with n vertices, t edges, $\Delta(G)$
large enough, and $m>(1+o(1)) \Delta(G) / \log \Delta(G)$,
$P_{D P}(G, m) \geq(1-\delta)^{n}\left(1-\frac{1}{m}\right)^{t} m^{n}$.
Close to being sharp modulo the $(1-\delta)^{n}$ error term.
Proposition (K., Mudrock (2021))
For any graph $G, P_{D P}(G, m) \leq\left(1-\frac{1}{m}\right)^{|E(G)|} m^{|V(G)|}$, for all m.

How is DP Color Function useful?

- Lower bound on both $P_{\ell}(G, m)$ and $P(G, m)$.

Theorem

- Let G be a n-vertex planar graph. $\chi_{\ell}(G), \chi_{D P}(G) \leq 5$. (Thomassen (2007a)) $P_{\ell}(G, 5) \geq 2^{n / 9}$.
- Let G be a n-vertex planar graph of girth at least 5 . $\chi_{\ell}(G), \chi_{D P}(G) \leq 3$.
(Thomassen (2007b)) $P_{\ell}(G, 3) \geq 2^{n / 10000}$.
(Postle, Smith-Roberge (2022+)) $P_{D P}(G, 3) \geq 2^{n / 292}$.
(Dahlberg, K., Mudrock (2023+)) $P_{D P}(G, 3) \geq 3^{n / 6}$.

How is DP Color Function useful?

- It can capture the behavior of extremal values:

How is DP Color Function useful?

Theorem (K., Mudrock, Sharma, Stratton (2023))
For any graphs G and H,

- $\chi_{D P}(G \square H) \leq \min \left\{\chi_{D P}(G)+\operatorname{Col}(H), \chi_{D P}(H)+\operatorname{Col}(G)\right\}-1$.
- $\chi_{D P}\left(G \square K_{k, t}\right)=\chi_{D P}(G)+k$ when

$$
t \geq\left(P_{D P}\left(G, \chi_{D P}(G)+k-1\right)\right)^{k} .
$$

- $\chi_{D P}\left(C_{2 m+1} \square K_{k, t}\right)=k+3$ when

$$
t \geq\left(\frac{2 k \ln (k+2)}{(k+1)!}\right)\left(P_{D P}\left(C_{2 m+1}, k+2\right)\right)^{k}
$$

- $\chi_{D P}\left(C_{2 m+1} \square K_{1, t}\right)=4$ iff $t \geq \frac{P_{D P}\left(C_{2 m+1}, 3\right)}{3}=\frac{2^{2 m+1}-2}{3}$.
- $\chi_{D P}\left(C_{2 m+2} \square K_{k, t}\right)=k+3$ when

$$
t \geq\left(\frac{2 \ln (k+2)}{\lfloor(k+2) / 2\rfloor(k-1)!}\right)\left(P_{D P}\left(C_{2 m+2}, k+2\right)\right)^{k}
$$

- $\chi_{D P}\left(C_{2 m+2} \square K_{1, t}\right)=4$ iff $t \geq P_{D P}\left(C_{2 m+2}, 3\right)=2^{2 m+2}-1$.

A Natural Question

We know:

Theorem (Dong, Zhang (2022+); improving Wang, Qian, Yan (2017), Thomassen (2009), Donner (1992), question of Kostochka \& Sidorenko (1990))
For any connected graph G with t edges, $P_{\ell}(G, m)=P(G, m)$ for $m>t-1$.

- For every graph G, does $P_{D P}(G, m)=P(G, m)$ for sufficiently large m ?

DP Color Function is different

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.
Furthermore, for any integer $g \geq 3$ there exists a graph G with girth g and an N such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N$.

Theorem (Dong, Yang (2022))
If G contains an edge e such that the length of a shortest cycle containing e in G is even, then there exists $N \in \mathbb{N}$ such that $P_{D P}(M, m)<P(M, m)$ whenever $m \geq N$.

A Follow-up Natural Question

- For which graphs G does $P_{D P}(G, m)=P(G, m)$ for all m ?
- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?

Theorem (K., Mudrock (2021))
 If G is chordal, then $P_{D P}(G, m)=P(G, m)$ for every m.

- a straightforward application of perfect elimination ordering.

A Follow-up Natural Question

- For which graphs G does $P_{D P}(G, m)=P(G, m)$ for all m ?
- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?

Theorem (K., Mudrock (2021))
If G is chordal, then $P_{D P}(G, m)=P(G, m)$ for every m.

- a straightforward application of perfect elimination ordering.

Theta Graphs

- A Generalized Theta graph $\Theta\left(I_{1}, \ldots, I_{k}\right)$ consists of a pair of end vertices joined by k internally disjoint paths of lengths $l_{1}, \ldots, l_{k} . \Theta\left(l_{1}, l_{2}, l_{3}\right)$ is simply called a Theta graph.
- $P\left(\Theta\left(I_{1}, \ldots, I_{k}\right), m\right)=$ $\frac{\prod_{i=1}^{k}\left((m-1)_{i}^{i_{i}+1}+(-1)^{i_{i}+1}(m-1)\right)}{(m(m-1))^{k-1}}+\frac{\prod_{i=1}^{k}\left((m-1)^{)_{i}}+(-1)^{l_{i}}(m-1)\right)}{m^{k-1}}$.
- Widely studied for many graph theoretic problems and are the main subject of two classical papers on the chromatic polynomial by Sokal, which include the celebrated result that the zeros of the chromatic polynomials of the Generalized Theta graphs are dense in the whole complex plane with the possible exception of the unit disc around the origin (by including the join of Generalized Theta graphs with K_{2} this extends to all of the complex plane).

Theta Graphs

Extending results of K. and Mudrock (2021),

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, I_{2}, I_{3}\right)$ and $2 \leq I_{1} \leq I_{2} \leq I_{3}$.
(1) If the parity of I_{1} is different from both I_{2} and I_{3}, then $P_{D P}(G, m)=P(G, m)$ for all m.
(2) If the parity of I_{1} is the same as I_{2} and different from I_{3}, then for $m \geq 2: P_{D P}(G, m)=$
$\frac{1}{m}\left[(m-1)^{l_{1}+l_{2}+l_{3}}+(m-1)^{1_{1}}-(m-1)^{l_{2}+1}-(m-1)^{l_{3}}+(-1)^{l_{3}+1}(m-2)\right]$.
(3) If the parity of l_{1} is the same as I_{3} and different from I_{2}, then for $m \geq 2: P_{D P}(G, m)=$
$\frac{1}{m}\left[(m-1)^{1_{1}+l_{2}+l_{3}}+(m-1)^{h_{1}}-(m-1)^{k_{3}+1}-(m-1)^{l_{2}}+(-1)^{l_{2}+1}(m-2)\right]$.
(4) If l_{1}, l_{2} and l_{3} all have the same parity, then for $m \geq 3$: $P_{D P}(G, m)=$ $\frac{1}{m}\left[(m-1)^{l_{1}+l_{2}+l_{3}}-(m-1)^{1_{1}}-(m-1)^{l_{2}}-(m-1)^{1_{3}}+2(-1)^{1_{1}+l_{2}+l_{3}}\right]$.

Two Fundamental Questions

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Two Fundamental Questions

- For which graphs G does there exist N such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?

Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, \ldots, I_{k}\right)$ where $k \geq 2, I_{1} \leq \cdots \leq I_{k}$, and $I_{2} \geq 2$.
(i) If there is aj$\in\{2, \ldots, k\}$ such that l_{1} and l_{j} have the same parity, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.
(ii) If I_{1} and I_{j} have different parity for each $j \in\{2, \ldots, k\}$, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$.

- Statement (i) does not answer the question of whether $P_{D P}(G, m)$ equals a polynomial for sufficiently large m. To answer that question, we study the DP color function of a class of graphs that contains all Generalized Theta graphs.

Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let $G=\Theta\left(I_{1}, \ldots, I_{k}\right)$ where $k \geq 2, I_{1} \leq \cdots \leq I_{k}$, and $I_{2} \geq 2$.
(i) If there is aj$\{2, \ldots, k\}$ such that I_{1} and l_{j} have the same parity, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.
(ii) If l_{1} and l_{j} have different parity for each $j \in\{2, \ldots, k\}$, then there is an $N \in \mathbb{N}$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$.

- Statement (i) does not answer the question of whether $P_{D P}(G, m)$ equals a polynomial for sufficiently large m. To answer that question, we study the DP color function of a class of graphs that contains all Generalized Theta graphs.

Graphs with a Feedback Vertex Set of Order One

- A feedback vertex set of a graph is a subset of vertices whose removal makes the resulting induced subgraph acyclic. Clearly, a Generalized Theta graph has a feedback vertex set of size one.

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then
there exists N and a polynomial $p(m)$ such that
$P_{D P}(G, m)=p(m)$ for all $m \geq N$.

What is the polynomial?

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- There is no explicit formula for the polynomial $p(m)$ but we know its three highest degree terms are the same as $P(G, m)$.
- By extension of results of and answering a question of K. and Mudrock (2021),

What is the polynomial?

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))
Let G be a graph with a feedback vertex set of order one. Then there exists N and a polynomial $p(m)$ s.t. $P_{D P}(G, m)=p(m)$ for all $m \geq N$.

- There is no explicit formula for the polynomial $p(m)$ but we know its three highest degree terms are the same as $P(G, m)$.
- By extension of results of and answering a question of K . and Mudrock (2021),
Theorem (Mudrock, Thomason (2021))
For any graph $G, P(G, m)-P_{D P}(G, m)=O\left(m^{n-3}\right)$ as $m \rightarrow \infty$.

When does List Color Ftn equal Chromatic Poly?

- Given any graph G, the list color function number of G, denoted $\nu_{\ell}(G)$, is the smallest $m \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$.
- The list color function threshold of G, denoted $\tau_{\ell}(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ for all $m \geq k$.

When does List Color Ftn equal Chromatic Poly?

- Given any graph G, the list color function number of G, denoted $\nu_{\ell}(G)$, is the smallest $m \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$.
- The list color function threshold of G, denoted $\tau_{\ell}(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ for all $m \geq k$.
- By Donner's 1992 result, we know that both $\nu_{\ell}(G)$ and $\tau_{\ell}(G)$ are finite for any graph G. Furthermore, $\chi(G) \leq \chi_{\ell}(G) \leq \nu_{\ell}(G) \leq \tau_{\ell}(G)$.

When does List Color Ftn equal Chromatic Poly?

- Given any graph G, the list color function number of G, denoted $\nu_{\ell}(G)$, is the smallest $m \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$.
- The list color function threshold of G, denoted $\tau_{\ell}(G)$, is the smallest $k \geq \chi(G)$ such that $P_{\ell}(G, m)=P(G, m)$ for all $m \geq k$.

Theorem (Thomassen (2009))
$\tau_{\ell}(G) \leq|V(G)|^{10}+1$.
Theorem (Wang, Qian, Yan (2017))
$\tau_{\ell}(G) \leq(|E(G)|-1) / \ln (1+\sqrt{2})+1$.
Theorem (Dong, Zhang (2022+))
$\tau_{\ell}(G) \leq(|E(G)|-1)$.

When does List Color Ftn equal Chromatic Poly?

- Two well-known open questions on the list color function can be stated as:
- Kirov and Naimi 2016: For every graph G, is it the case that $\nu_{\ell}(G)=\tau_{\ell}(G)$?
- Thomassen 2009: Is there a universal constant μ such that for any graph $G, \tau_{\ell}(G)-\chi_{\ell}(G) \leq \mu$?

When does List Color Ftn equal Chromatic Poly?

- Kirov and Naimi 2016: For every graph G, is it the case that $\nu_{\ell}(G)=\tau_{\ell}(G)$?

A question of stickiness: Do the list color function and the corresponding chromatic polynomial of a graph stay the same after the first point at which they are both nonzero and equal?

Still Open. But corresponding DP color function question has been answered negatively.

When does List Color Ftn equal Chromatic Poly?

- Thomassen 2009: Is there a universal constant μ such that for any graph $G, \tau_{\ell}(G) \leq \chi_{\ell}(G)+\mu$?
The answer is no in a very strong sense.

Theorem (K., Kumar, Mudrock, Rewers, Shin, To (2022+))
There is a constant $C>0$ such that for each $I \geq 16$, $\tau_{\ell}\left(K_{2, I}\right)-\chi_{\ell}\left(K_{2, I}\right)=\tau_{\ell}\left(K_{2, I}\right)-3 \geq C \sqrt{I}$.

When does List Color Ftn equal Chromatic Poly?

- Threshold Extremal functions:
$\delta_{\max }(t)=\max \left\{\tau_{\ell}(G)-\chi_{\ell}(G):|E(G)| \leq t\right\}$
$\tau_{\text {max }}(t)=\max \left\{\tau_{\ell}(G):|E(G)| \leq t\right\}$

Theorem (Wang et al. (2017) and K. et al. (2022+))
$C_{1} \sqrt{t} \leq \delta_{\max }(t) \leq C_{2} t$ for large enough t
$C_{3} \sqrt{t} \leq \tau_{\text {max }}(t) \leq C_{2} t$ for large enough t

- What is the asymptotic behavior of $\delta_{\max }(t)$?

What is the asymptotic behavior of $\tau_{\max }(t)$? In particular, is $\tau_{\text {max }}(t)=\omega(\sqrt{t})$?

Since $\chi_{\ell}(G)=O(\sqrt{|E(G)|})$ as $|E(G)| \rightarrow \infty$, if $\tau_{\text {max }}(t)=\omega(\sqrt{t})$ as $t \rightarrow \infty$, then $\delta_{\max }(t) \sim \tau_{\max }(t)$ as $t \rightarrow \infty$.

When does DP Color Ftn equal Chromatic Poly?

- Given any graph G, the DP color function number of G, denoted $\nu_{D P}(G)$, is the smallest $m \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$. If $P(G, m)-P_{D P}(G, m)>0$ for all m, we let $\nu_{D P}(G)=\infty$.
- The DP color function threshold of G, denoted $\tau_{D P}(G)$, is the smallest $k \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq k$. If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.

When does DP Color Ftn equal Chromatic Poly?

- Given any graph G, the DP color function number of G, denoted $\nu_{D P}(G)$, is the smallest $m \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$.
If $P(G, m)-P_{D P}(G, m)>0$ for all m, we let $\nu_{D P}(G)=\infty$.
- The DP color function threshold of G, denoted $\tau_{D P}(G)$, is the smallest $k \geq \chi(G)$ such that $P_{D P}(G, m)=P(G, m)$ whenever $m \geq k$.
If $P(G, m)-P_{D P}(G, m)>0$ for infinitely many m, we let $\tau_{D P}(G)=\infty$.
- $\chi(G) \leq \chi_{l}(G) \leq \chi_{D P}(G) \leq \nu_{D P}(G) \leq \tau_{D P}(G)$.

When does DP Color Ftn equal Chromatic Poly?

- We can now ask two natural questions about the DP color function:
- For every graph G, is it the case that $\nu_{D P}(G)=\tau_{D P}(G)$?
- When is $\tau_{D P}(G)$ finite?

Find any universal bounds on $\tau_{D P}$. Mostly wide open. Some results with Becker, Hewitt, Maxfield, Mudrock, Spivey, Thomason, Wagstrom (2021+).

When does DP Color Ftn equal Chromatic Poly?

- Kirov and Naimi 2016: For every graph G, is it the case that $\nu_{\ell}(G)=\tau_{\ell}(G) ?$ Still Open.
- For every graph G, is it the case that $\nu_{D P}(G)=\tau_{D P}(G)$? No!

Theorem (K., Maxfield, Mudrock, Thomason (2022+)) If G is $\Theta(2,3,3,3,2)$ or $\Theta(2,3,3,3,3,3,2,2)$, then $P_{D P}(G, 3)=P(G, 3)$ and there is an N such that $P_{D P}(G, m)<P(G, m)$ for all $m \geq N$.

- Only two counterexamples!

Polynomial Method

In a survey article, Terrence Tao describes the polynomial method as:
"strategy is to capture the arbitrary set of objects in the zero set of a polynomial whose degree is in control; for instance the degree may be bounded by a function of the number of the objects."

Then we use algebraic tools to understand this zero set.

This paradigm has been used for breakthrough results in arithmetic combinatorics, additive combinatorics, number theory, graph theory, discrete geometry, and more.

Combinatorial Nullstellentsatz

- How many zeros can a n-variable polynomial on a field \mathbb{F} have?

Lemma
Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. For each i, let the degree of f in x_{i} be at most t_{i}, and suppose S_{i} is a set of more than t_{i} distinct values from \mathbb{F}. If $f\left(x_{1}, \ldots, x_{n}\right)=0$ for $\left(x_{1}, \ldots, x_{n}\right) \in \prod_{i=1}^{n} S_{i}$, then f is the zero polynomial.

Can we do better? Instead of controlling the individual degree of each variable, work with the total degree of the polynomial.

Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and the degree of f is at most $\sum_{i=1}^{n} t_{i}$. For each $i \in\{1, \ldots, n\}$, suppose that S_{i} is a set of elements in \mathbb{F} with $\left|S_{i}\right|>t_{i}$.
If $\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{f} \neq 0$, then $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$ for some $\left(s_{1}, \ldots, s_{n}\right) \in \prod_{i=1}^{n} s_{i}$.

- $\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{p}$ denotes the element of \mathbb{F} that is the coefficient of the monomial $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in the expanded form of $p \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$.

Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and the degree of f is at most $\sum_{i=1}^{n} t_{i}$. For each $i \in\{1, \ldots, n\}$, suppose that S_{i} is a set of elements in \mathbb{F} with $\left|S_{i}\right|>t_{i}$.
If $\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{f} \neq 0$, then $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$ for some
$\left(s_{1}, \ldots, s_{n}\right) \in \prod_{i=1}^{n} s_{i}$.

- Combinatorial Nullstellensatz has been applied to numerous problems in additive combinatorics, number theory, discrete geometry, graph theory since 1980s.

Graph Polynomial

- The graph polynomial of G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ is $f_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}-x_{j}\right)$.

$f_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$
- f_{G} is homogenous of degree $|E(G)|$.
- If L is a list assignment for G with $L(v) \subset \mathbb{R}$ for $v \in V(G)$, then a proper L-coloring of G exists if and only if there is a $\left(c_{1}, \ldots, c_{n}\right) \in \prod_{i=1}^{n} L\left(v_{i}\right)$ such that $f_{G}\left(c_{1}, \ldots, c_{n}\right) \neq 0$.
- $f_{G}(1,2,4,3)=(-1)(-2)(1)(-2)=-4\left(\ln\right.$ fact, $\left.\chi_{\ell}\left(C_{4}\right) \leq 2\right)$

Graph Polynomial

- The graph polynomial of G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ is $f_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}-x_{j}\right)$.

$f_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$
- f_{G} is homogenous of degree $|E(G)|$
- If L is a list assignment for G with $L(v) \subset \mathbb{R}$ for $v \in V(G)$, then a proper L-coloring of G exists if and only if there is a - $f_{G}(1,2,4,3)=(-1)(-2)(1)(-2)=-4($ In fact,

Graph Polynomial

- The graph polynomial of G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ is $f_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}-x_{j}\right)$.

$f_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$
- f_{G} is homogenous of degree $|E(G)|$.
- If L is a list assignment for G with $L(v) \subset \mathbb{R}$ for $v \in V(G)$, then a proper L-coloring of G exists if and only if there is a $\left(c_{1}, \ldots, c_{n}\right) \in \prod_{i=1}^{n} L\left(v_{i}\right)$ such that $f_{G}\left(c_{1}, \ldots, c_{n}\right) \neq 0$.

Graph Polynomial

- The graph polynomial of G with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ is $f_{G}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}-x_{j}\right)$.

$f_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$
- f_{G} is homogenous of degree $|E(G)|$.
- If L is a list assignment for G with $L(v) \subset \mathbb{R}$ for $v \in V(G)$, then a proper L-coloring of G exists if and only if there is a $\left(c_{1}, \ldots, c_{n}\right) \in \prod_{i=1}^{n} L\left(v_{i}\right)$ such that $f_{G}\left(c_{1}, \ldots, c_{n}\right) \neq 0$.
- $f_{G}(1,2,4,3)=(-1)(-2)(1)(-2)=-4\left(\ln\right.$ fact, $\left.\chi_{\ell}\left(C_{4}\right) \leq 2\right)$

Combinatorial Nullstellensatz and List Coloring

- Suppose $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$. Note f has degree at most 4.
- Since $\left[x_{1} x_{2} x_{3} x_{4}\right]_{f}=-2 \neq 0$, the CN tells us there is an element in $\prod_{i=1}^{4} S_{i}$ for which f is nonzero.
- Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list

Combinatorial Nullstellensatz and List Coloring

- Suppose $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$. Note f has degree at most 4.
- Suppose $S_{1}=S_{2}=\{1,2\}, S_{3}=\{3,4\}$, and $S_{4}=\{1,3\}$.

Combinatorial Nullstellensatz and List Coloring

- Suppose $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$. Note f has degree at most 4.
- Suppose $S_{1}=S_{2}=\{1,2\}, S_{3}=\{3,4\}$, and $S_{4}=\{1,3\}$.
- Since $\left[x_{1} x_{2} x_{3} x_{4}\right]_{f}=-2 \neq 0$, the CN tells us there is an element in $\prod_{i=1}^{4} S_{i}$ for which f is nonzero.

Combinatorial Nullstellensatz and List Coloring

- Suppose $f \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{4}\right)\left(x_{1}-x_{4}\right)$. Note f has degree at most 4.
- Suppose $S_{1}=S_{2}=\{1,2\}, S_{3}=\{3,4\}$, and $S_{4}=\{1,3\}$.
- Since $\left[x_{1} x_{2} x_{3} x_{4}\right]_{f}=-2 \neq 0$, the CN tells us there is an element in $\prod_{i=1}^{4} S_{i}$ for which f is nonzero.
- Alon-Tarsi (1990) famously gave a combinatorial interpretation of this non-zero coefficient of the graph polynomial. A fundamental method for bounding the list chromatic number: $\chi_{\ell}(G) \leq A T(G)$.

Combinatorial Nullstellensatz and DP Coloring

- We saw $\chi_{\ell}\left(C_{4}\right) \leq A T\left(C_{4}\right) \leq 2$, but we know $\chi_{D P}\left(C_{4}\right)>2$.
- Intuitively, the issue with applying the Combinatorial Nullstellensatz in the DP-context is that which "colors" are different can vary from edge to edge.

- This poses an issue in working with graph polynomials with real coefficients.
- To (partially) overcome this issue we view graph polynomials as having coefficients in some finite field.

Combinatorial Nullstellensatz and DP Coloring

- We saw $\chi_{\ell}\left(C_{4}\right) \leq A T\left(C_{4}\right) \leq 2$, but we know $\chi_{D P}\left(C_{4}\right)>2$.
- Intuitively, the issue with applying the Combinatorial Nullstellensatz in the DP-context is that which "colors" are different can vary from edge to edge.

- This poses an issue in working with graph polynomials with real coefficients.
- To (partially) overcome this issue we view graph polynomials as having coefficients in some finite field.

Prime Covers

- Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$, we say $\mathcal{H}=(L, H)$ is an f-cover of G if $|L(u)|=f(u)$ for each $u \in V(G)$. We say that G is f-DP-colorable if G is \mathcal{H}-colorable whenever \mathcal{H} is an f-cover of G.
- When the choice of t is implicitly known, we simply say
- If $\mathcal{H}=(L, H)$ is a prime cover of G of order t, we assume that $L(v) \subseteq\left\{(v, j): j \in \mathbb{F}_{t}\right\}$ for each $v \in V(G)$.

Prime Covers

- An f-cover $\mathcal{H}=(L, H)$ of G is a prime cover of G of order t whenever t is a power of a prime and $\max _{v \in V(G)} f(v) \leq t$.
- When the choice of t is implicitly known, we simply say prime cover or prime f-cover.
- If $\mathcal{H}=(L, H)$ is a prime cover of G of order t, we assume that $L(v) \subseteq\left\{(v, j): j \in \mathbb{F}_{t}\right\}$ for each $v \in V(G)$.

- We need a way of analyzing matchings between parts.

Prime Covers

- An f-cover $\mathcal{H}=(L, H)$ of G is a prime cover of G of order t whenever t is a power of a prime and $\max _{v \in V(G)} f(v) \leq t$.
- When the choice of t is implicitly known, we simply say prime cover or prime f-cover.
- If $\mathcal{H}=(L, H)$ is a prime cover of G of order t, we assume that $L(v) \subseteq\left\{(v, j): j \in \mathbb{F}_{t}\right\}$ for each $v \in V(G)$.

- We need a way of analyzing matchings between parts.

Saturation Functions

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$.
- $\mathcal{H}=(L, H)$ be a prime cover of G of order t.
- For each $v_{i} v_{j} \in E(G)$, the saturation function associated with $E_{H}\left(L\left(v_{i}\right), L\left(v_{j}\right)\right)$ is denoted $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$.

For example, $\sigma_{v_{3} v_{4}}^{\mathcal{H}}(0)=1$ and $\sigma_{v_{3} v_{4}}^{\mathcal{H}}(1)=0$.

Good Saturation Functions

- We say that $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$ is good if there is a $\beta \in \mathbb{F}_{t}$ such that for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$

$$
a-\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)=\beta
$$

where subtraction is performed in \mathbb{F}_{t}.

- For a 2-fold cover, each saturation function associated with a matching, must be good!

Good Saturation Functions

- We say that $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$ is good if there is a $\beta \in \mathbb{F}_{t}$ such that for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$

$$
a-\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)=\beta
$$

where subtraction is performed in \mathbb{F}_{t}.

- For a 2-fold cover, each saturation function associated with a matching, must be good!

Good Covers

- Suppose $\mathcal{H}=(L, H)$ is a prime cover of G of order t.
- We say that \mathcal{H} is a good prime cover of order t if for each $v_{i} v_{j} \in E(G)$ with $j>i$, the associated saturation function $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$ is good.
- For example, we know every 2-fold cover is a good prime cover of order 2.
- It cannot be said that every 3-fold cover is a good prime cover of order 3.

Good Covers

- Suppose $\mathcal{H}=(L, H)$ is a prime cover of G of order t.
- We say that \mathcal{H} is a good prime cover of order t if for each $v_{i} v_{j} \in E(G)$ with $j>i$, the associated saturation function $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$ is good.
- For example, we know every 2-fold cover is a good prime cover of order 2.
- It cannot be said that every 3-fold cover is a good prime cover of order 3.

Key Observations

- Suppose G is a graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{H}=(L, H)$ is a good prime cover of G of order t.
- For each $v_{i} v_{j} \in E(G)$ with $j>i$, there is a $\beta_{i, j} \in \mathbb{F}_{t}$ such that $a-\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)-\beta_{i, j}=0$ for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$.
- An \mathcal{H}-coloring of G exists if there is a

Nullstellensatz can be applied.

Key Observations

- Suppose G is a graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{H}=(L, H)$ is a good prime cover of G of order t.
- For each $v_{i} v_{j} \in E(G)$ with $j>i$, there is a $\beta_{i, j} \in \mathbb{F}_{t}$ such that $a-\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)-\beta_{i, j}=0$ for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$.
- Let $\hat{f}\left(x_{1}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}-x_{j}-\beta_{i j}\right)$.
- An \mathcal{H}-coloring of G exists if there is a

Nullstellensatz can be applied.

Key Observations

- Suppose G is a graph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{H}=(L, H)$ is a good prime cover of G of order t.
- For each $v_{i} v_{j} \in E(G)$ with $j>i$, there is a $\beta_{i, j} \in \mathbb{F}_{t}$ such that $a-\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)-\beta_{i, j}=0$ for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$.
- Let $\hat{f}\left(x_{1}, \ldots, x_{n}\right)=\prod_{v_{i} V_{j} \in E(G), j>i}\left(x_{i}-x_{j}-\beta_{i j}\right)$.
- An \mathcal{H}-coloring of G exists if there is a $\left(p_{1}, \ldots, p_{n}\right) \in \prod_{i=1}^{n} P_{i}$ such that $\hat{f}\left(p_{1}, p_{2}, \ldots, p_{n}\right) \neq 0$, where $P_{i}=\left\{j \in \mathbb{F}_{t}:\left(v_{i}, j\right) \in L(v)\right\}$.
- Note that if $\sum_{i=1}^{n} t_{i}=|E(G)|$, then
$\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{\hat{f}}=\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{f_{G}}$. So, the Combinatorial Nullstellensatz can be applied.

Combinatorial Nullstellensatz for DP Coloring

Theorem (K., Mudrock (2020))
Let $\mathcal{H}=(L, H)$ be a good prime cover of order t of a graph G.
Suppose that $f_{G} \in \mathbb{F}_{t}\left[x_{1}, \ldots, x_{n}\right]$. If $\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{G} \neq 0$ and
$\left|L\left(v_{i}\right)\right|>t_{i}$ for each $i \in[n]$, then there is an \mathcal{H}-coloring of G.

With applications to:

- f-DP-coloring of a cone of a connected bipartite graph.
- DP-coloring analogue of a Theorem of Akbari et al. (2006) on a sufficient condition for f-choosability in terms of unique colorability.
- Completely determine the DP-chromatic number of squares of all cycles.
- Algebraic sufficient condition for 3-DP-colorability.

Three-fold Covers

- Suppose that \mathcal{H} is a prime cover of G of order 3.
- If $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$ is bad, there is a $\beta_{i, j} \in \mathbb{F}_{3}$ so that $a+\sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)=\beta_{i, j}$.

- So, for any $v_{i} v_{j} \in E(G)$ there is a $c_{i, j}, \beta_{i, j} \in \mathbb{F}_{3}$ so that

$$
a+(-1)^{c_{i, j}} \sigma_{v_{i} v_{j}}^{\mathcal{H}}(a)=\beta_{i, j}
$$

for each a in the domain of $\sigma_{v_{i} v_{j}}^{\mathcal{H}}$.

Three-fold Covers

Theorem (K., Mudrock (2020))
Suppose G is a graph with $\chi_{D P}(G) \geq 2$ and
$V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $\mathcal{F} \subseteq \mathbb{F}_{3}\left[x_{1}, \ldots, x_{n}\right]$ be the set of at
most $2^{|E(G)|}$ polynomials given by:
$\mathcal{F}=\left\{\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}+b_{i, j} x_{j}\right): b_{i, j} \in\{-1,1\}\right\}$.
If for each $f \in \mathcal{F}$ there exists $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \prod_{i=1}^{n}\{0,1,2\}$ such that $\left[\prod_{i=1}^{n} x_{i}^{t_{i}}\right]_{f} \neq 0$, then $\chi_{D P}(G) \leq 3$.

- The number of polynomials in set \mathcal{F} can be reduced to $2^{|E(G)|-|V(G)|+1}$, when G is a connected graph containing a cycle.

Combinatorial Nullstellensatz for DP-color Function

Theorem (Alon, Füredi (1993))

Let \mathbb{F} be an arbitrary field, let $A_{1}, A_{2}, \ldots, A_{n}$ be any non-empty subsets of \mathbb{F}, and let $B=\prod_{i=1}^{n} A_{i}$. Suppose that
$P \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial of degree d that does not vanish on all of B. Then, the number of points in B for which P has a non-zero value is at least $\min \prod_{i=1}^{n} q_{i}$ where the minimum is taken over all integers q_{i} such that $1 \leq q_{i} \leq\left|A_{i}\right|$ and $\sum_{i=1}^{n} q_{i} \geq-d+\sum_{i=1}^{n}\left|A_{i}\right|$.

Combinatorial Nullstellensatz for DP-color Function

Theorem (Alon, Füredi (1993))

Let \mathbb{F} be an arbitrary field, let $A_{1}, A_{2}, \ldots, A_{n}$ be any non-empty subsets of \mathbb{F}, and let $B=\prod_{i=1}^{n} A_{i}$. Suppose that
$P \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial of degree d that does not vanish on all of B. Then, the number of points in B for which P has a non-zero value is at least min $\prod_{i=1}^{n} q_{i}$ where the minimum is taken over all integers q_{i} such that $1 \leq q_{i} \leq\left|A_{i}\right|$ and $\sum_{i=1}^{n} q_{i} \geq-d+\sum_{i=1}^{n}\left|A_{i}\right|$.

$$
\text { with } \hat{f}\left(x_{1}, \ldots, x_{n}\right)=\prod_{v_{i} v_{j} \in E(G), j>i}\left(x_{i}+(-1)^{c_{i j}} x_{j}-\beta_{i j}\right) \text { gives: }
$$

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with $\chi_{D P}(G) \leq 3$. Suppose that $|V(G)|=n$, $|E(G)|=I$, and $2 n \geq I$. Then, $P_{D P}(G, 3) \geq 3^{n-1 / 2}$.

Combinatorial Nullstellensatz for DP-color Function

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with $\chi_{D P}(G) \leq 3$. Suppose that $|V(G)|=n$,
$|E(G)|=1$, and $2 n \geq 1$. Then, $P_{D P}(G, 3) \geq 3^{n-1 / 2}$.

Corollary
Let G be an n-vertex planar graph of girth at least 5 . Then, $P_{D P}(G, 3) \geq 3^{n / 6}$.

- Previous best bounds: $P_{\ell}(G, 3) \geq 2^{n / 10000}$ (Thomassen (2007b)), and $P_{D P}(G, 3) \geq 2^{n / 292}$ (Postle, Smith-Roberge (2022+)).

Combinatorial Nullstellensatz for DP-color Function

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with $\chi_{D P}(G) \leq 3$. Suppose that $|V(G)|=n$, $|E(G)|=I$, and $2 n \geq I$. Then, $P_{D P}(G, 3) \geq 3^{n-1 / 2}$.

Corollary
Let G be an n-vertex planar graph of girth at least 5 . Then, $P_{D P}(G, 3) \geq 3^{n / 6}$.

Corollary
There are infinitely many graphs G for which $\chi_{D P}(G)=3$, $P_{D P}(G, 3)=P(G, 3)$, and there is an $N_{G} \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N_{G}$.

- Previously only two such graphs were known.

Combinatorial Nullstellensatz for DP-color Function

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with $\chi_{D P}(G) \leq 3$. Suppose that $|V(G)|=n$,
$|E(G)|=1$, and $2 n \geq 1$. Then, $P_{D P}(G, 3) \geq 3^{n-1 / 2}$.

Corollary
Let G be an n-vertex planar graph of girth at least 5 . Then, $P_{D P}(G, 3) \geq 3^{n / 6}$.

Corollary
There are infinitely many graphs G for which $\chi_{D P}(G)=3$, $P_{D P}(G, 3)=P(G, 3)$, and there is an $N_{G} \in \mathbb{N}$ such that $P_{D P}(G, m)<P(G, m)$ whenever $m \geq N_{G}$.

Thank You!

Questions?

- For which graphs G does $\exists N$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$? That is, when is $\tau_{D P}(G)$ finite?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?
- Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?
- What is the asymptotic behavior of $\delta_{\max }(t)$ and $\tau_{\max }(t)$? In particular, is $\tau_{\max }(t)=\omega(\sqrt{t})$?
- For fixed n what is the asymptotic behavior of $\tau_{\ell}\left(K_{n, I}\right)$ as $I \rightarrow \infty$?
- Kirov and Naimi 2016: For every graph G, is it the case that $\nu_{\ell}(G)=\tau_{\ell}(G)$? That is, if $P_{\ell}(G, m)=P(G, m)$ for some $m \geq \chi(G)$, does it follow that $P_{\ell}(G, m+1)=P(G, m+1)$?

Thank You!

Questions?

- For which graphs G does $\exists N$ such that $P_{D P}(G, m)=P(G, m)$ for all $m \geq N$? That is, when is $\tau_{D P}(G)$ finite?
- Given a graph G does there always exist an $N \in \mathbb{N}$ and a polynomial $p(m)$ such that $P_{D P}(G, m)=p(m)$ whenever $m \geq N$?
- Given a graph G and $p \in \mathbb{N}$, what is the value of $\tau_{D P}\left(K_{p} \vee G\right)$?
- What is the asymptotic behavior of $\delta_{\max }(t)$ and $\tau_{\max }(t)$? In particular, is $\tau_{\max }(t)=\omega(\sqrt{t})$?
- For fixed n what is the asymptotic behavior of $\tau_{\ell}\left(K_{n, I}\right)$ as $I \rightarrow \infty$?
- Kirov and Naimi 2016: For every graph G, is it the case that $\nu_{\ell}(G)=\tau_{\ell}(G)$? That is, if $P_{\ell}(G, m)=P(G, m)$ for some $m \geq \chi(G)$, does it follow that $P_{\ell}(G, m+1)=P(G, m+1)$?

Tools for DP Color Function - I

Classic tools like:
Lemma (from Whitney's Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g.
Suppose $P(G, m)=\sum_{i=0}^{n}(-1)^{i} a_{i} m^{n-i}$.
Then, for $i=0,1, \ldots, g-2$
$a_{i}=\binom{s}{i}$ and $a_{g-1}=\binom{s}{g-1}-t$,
where t is the number of cycles of length g contained in G.

- Inclusion-Exclusion type arguments.
- AM-GM inequality, and its generalization the Rearrangement Inequality.
- Probabilistic arguments/ Random constructions.

Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{E(G)} \mid}$ for all m.

- Expected number of independent transversals in a random m-fold cover.

Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|(G)|}{m^{E(G) \mid}}$ for all m.

- This upper bound is the same as the lower bound on $P(G, m)$ when G is bipartite, as claimed by the well-known Sidorenko's conjecture on counting homomorphisms from bipartite graphs.

Corollary (K., Mudrock (2021))
For any connected graph G,
$P_{D P}(G, m)=\frac{m^{|V(G)|}(m-1)^{|E(G)|}}{m^{|E(G)|}}$ for all m if and only if G is a tree.

Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
$P_{D P}(G, m) \leq \frac{m^{n}(m-1)|E(G)|}{m^{E(G)} \mid}$ for all m.

Lemma (K., Mudrock (2021))
Let G be a graph with $e \in E(G)$.
If $m \geq 2$ and $P(G-\{e\}, m)<\frac{m}{m-1} P(G, m)$,
then $P_{D P}(G, m)<P(G, m)$.

Tools for DP Color Function - III

- Let $\mathcal{H}=(L, H)$ be an m-fold cover of G. We say that \mathcal{H} has a canonical labeling if it is possible to name the vertices of H so that $L(u)=\{(u, j): j \in[m]\}$ and $(u, j)(v, j) \in E(H)$ for each $j \in[m]$ whenever $u v \in E(G)$.
- When \mathcal{H} has a canonical labeling, G has an \mathcal{H}-coloring if and only if G has a proper m-coloring.
- Trees have a canonical labeling.
- Using canonical labeling, we can develop tools to handle graphs that are close to being a forest.

Tools for DP Color Function - III

- Let $\mathcal{H}=(L, H)$ be an m-fold cover of G. We say that \mathcal{H} has a canonical labeling if it is possible to name the vertices of H so that $L(u)=\{(u, j): j \in[m]\}$ and $(u, j)(v, j) \in E(H)$ for each $j \in[m]$ whenever $u v \in E(G)$.
- When \mathcal{H} has a canonical labeling, G has an \mathcal{H}-coloring if and only if G has a proper m-coloring.
- Trees have a canonical labeling.
- Using canonical labeling, we can develop tools to handle graphs that are close to being a forest.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

Lemma (K., Mudrock (2021))
Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 2$.
Suppose $e=u v \in E(G)$. Let $H^{\prime}=H-E_{H}(L(u), L(v))$ so that $\mathcal{H}^{\prime}=\left(L, H^{\prime}\right)$ is an m-fold cover of $G-\{e\}$.
If \mathcal{H}^{\prime} has a canonical labeling, then
$P_{D P}(G, \mathcal{H}) \geq P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$
Moreover, there exists an m-fold cover of $\mathcal{G}, \mathcal{H}^{*}=\left(L, H^{*}\right)$, s.t.
$P_{D P}\left(G, \mathcal{H}^{*}\right)=P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

- A sharp bound when removing an edge gives us a canonical labeling.

Lemma (K., Mudrock (2021))
Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 2$.
Suppose $e=u v \in E(G)$. Let $H^{\prime}=H-E_{H}(L(u), L(v))$ so that $\mathcal{H}^{\prime}=\left(L, H^{\prime}\right)$ is an m-fold cover of $G-\{e\}$.
If \mathcal{H}^{\prime} has a canonical labeling, then
$P_{D P}(G, \mathcal{H}) \geq P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$
Moreover, there exists an m-fold cover of $G, \mathcal{H}^{*}=\left(L, H^{*}\right)$, s.t.
$P_{D P}\left(G, \mathcal{H}^{*}\right)=P(G-e, m)-\max \left\{P(G-e, m)-P(G, m), \frac{P(G, m)}{m-1}\right\}$.

- Next, a sharp bound when removing an induced P_{3}.

Tools for DP Color Function - III

Lemma (K., Mudrock (2021))

Let $\mathcal{H}=(L, H)$ be an m-fold cover of G with $m \geq 3$. Let e_{1}, e_{2} be the edges of an induced path P of length two.
Let $G_{0}=G-\left\{e_{1}, e_{2}\right\}, G_{1}=G-e_{1}, G_{2}=G-e_{2}$, and G^{*} be the graph obtained by making P into K_{3}. Suppose \mathcal{H}^{\prime}, the m-fold cover of G_{0} induced by \mathcal{H}, has a canonical labeling. Let
$A_{1}=P\left(G_{0}, m\right)-P(G, m), A_{2}=P\left(G_{0}, m\right)-P\left(G_{2}, m\right)+\frac{1}{m-1} P(G, m)$,
$A_{3}=P\left(G_{0}, m\right)-P\left(G_{1}, m\right)+\frac{1}{m-1} P(G, m)$,
$A_{4}=\frac{1}{m-1}\left(P\left(G_{1}, m\right)+P\left(G_{2}, m\right)+P\left(G^{*}, m\right)-P(G, m)\right)$, and
$A_{5}=\frac{1}{m-1}\left(P\left(G_{1}, m\right)+P\left(G_{2}, m\right)-\frac{1}{m-2} P\left(G^{*}, m\right)\right)$.
Then, $P_{D P}(G, \mathcal{H}) \geq P\left(G_{0}, m\right)-\max \left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$.
Moreover, there exists an m-fold cover of G that achieves the equality.

Tools for DP Color Function - IV

- Clique-gluing and the closely related clique-sum are fundamental graph operations which have been used to give a structural characterization of many families of graphs.
- A simple example is that chordal graphs are precisely the graphs that can be formed by clique-gluings of cliques. While the most famous example would be Robertson and Seymour's seminal Graph Minor Structure Theorem characterizing minor-free families of graphs.

Tools for DP Color Function - IV

- We build a toolbox for studying K_{p}-gluings of graphs: Choose a copy of K_{p} contained in each G_{i} and form a new graph $G\left(\in \bigoplus_{i=1}^{n}\left(G_{i}, p\right)\right)$, called a K_{p}-gluing of G_{1}, \ldots, G_{n}, from the union of G_{1}, \ldots, G_{n} by arbitrarily identifying the chosen copies of K_{p}.

Tools for DP Color Function - IV

- Given vertex disjoint graphs G_{1}, \ldots, G_{n}, we define amalgamated cover, a natural analogue of "gluing" m-fold covers of each G_{i} together so that we get an m-fold cover for $G \in \bigoplus_{i=1}^{n}\left(G_{i}, p\right)$.
- We define separated covers, a natural analogue of "splitting" an m-fold cover of $G \in \bigoplus_{i=1}^{n}\left(G_{i}, p\right)$ into separate m-fold covers for each G_{i}.

Tools for DP Color Function - IV

- Given vertex disjoint graphs G_{1}, \ldots, G_{n}, we define amalgamated cover, a natural analogue of "gluing" m-fold covers of each G_{i} together so that we get an m-fold cover for $G \in \bigoplus_{i=1}^{n}\left(G_{i}, p\right)$.
- We define separated covers, a natural analogue of "splitting" an m-fold cover of $G \in \bigoplus_{i=1}^{n}\left(G_{i}, p\right)$ into separate m-fold covers for each G_{i}.
- We apply these ideas together with other tools to build a theory of DP Color Function of Clique-gluings of graphs and how the DP Color Function of such graphs compares with the corresponding chromatic polynomial.
But that's another talk.

