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Graph Coloring

Color vertices so that any vertices with an edge between
them must get different colors.

A proper m-coloring of a graph G is a labeling
c : V (G)→ [m], such that c(u) 6= c(v) whenever u and v
are adjacent in G.

Minimum number of colors needed for such a coloring is
called the chromatic number χ(G) of the graph G.

Each vertex has the same list of colors [m] available to it.



List Coloring

List coloring was introduced independently by Vizing
(1976) and Erdős, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.



List Coloring

For graph G suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. If all the
lists associated with the list assignment L have size m, we
say that L is an m-assignment.

An L-coloring for G is a proper coloring, f , of G such that
f (v) ∈ L(v) for all v ∈ V (G).



List Coloring

The list chromatic number of a graph G, written χ`(G), is
the smallest m such that G is L-colorable whenever
|L(v)| ≥ m for each v ∈ V (G).

Since usual coloring corresponds to a constant list
assignment,

χ(G) ≤ χ`(G).



A Different Perspective



DP-Coloring
In 2015, Dvořák and Postle introduced DP-coloring (they
called it correspondence coloring) of graphs.
Intuitively, DP-coloring considers the worst-case scenario
of how many colors we need in the lists if we no longer can
identify the names of the colors. Each vertex still gets a list
of colors but identification of which colors are different can
vary from edge to edge.

A (DP-)cover of G is a pair H = (L,H) consisting of a
graph H and a function L : V (G)→ P(V (H)) satisfying:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching (the
matching may be empty).
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(DP-) Cover of a Graph

A cover of G is a pair H = (L,H) consisting of a graph H
and a function L : V (G)→ P(V (H)) satisfying:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching (the
matching may be empty).
See also “covering graphs”, “Lifts”. Studied since 1990s.

Intuition:
Blow up each vertex u in G into a clique of size |L(u)|;
Add a matching (possibly empty) between any two such
cliques for vertices u and v if uv is an edge in G.



(DP-) Cover of a Graph
Intuition:
Blow up each vertex u in G into a clique of size |L(u)|;
Add a matching (possibly empty) between any two such
cliques for vertices u and v if uv is an edge in G.
A cover H = (L,H) is called m-fold if |L(u)| = m for all u.
Two 2-fold covers of C4:



DP-Chromatic Number of a Graph

Given H = (L,H), a cover of G, an H-coloring of G is an
independent set in H of size |V (G)|. Equivalently, an
independent transversal in H.
The DP-chromatic number of a graph G, χDP(G), is the
smallest m such that G admits an H-coloring for every
m-fold cover H of G.



DP-Chromatic Number of a Graph
Given H = (L,H), a cover of G, an H-coloring of G is an
independent set in H of size |V (G)|.
The DP-chromatic number of a graph G, χDP(G), is the
smallest m such that G admits an H-coloring for every
m-fold cover H of G.
χDP(C4) > 2 = χ`(C4):



DP-Coloring and List Coloring
Given an m-assignment, L, for a graph G, it is easy to
construct an m-fold cover H of G such that:
G has an H-coloring if and only if G has a proper
L-coloring.

χ(G) ≤ χ`(G) ≤ χDP(G).



Counting Colorings

Birkhoff 1912: For m ∈ N, let P(G,m) denote the number
of proper colorings of G where the colors used come from
{1, . . . ,m}. P(G,m) is the chromatic polynomial of G.

P(G,L) be the number of proper L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
P`(G,m) is the minimum value of P(G,L) over all possible
m-assignments L for G.
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K. and Mudrock 2021: The DP color function, PDP(G,m),
is the minimum value of PDP(G,H) where the minimum is
taken over all possible m-fold covers H of G.
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K. and Mudrock 2021: The DP color function, PDP(G,m),
is the minimum value of PDP(G,H) where the minimum is
taken over all possible m-fold covers H of G.

PDP(G,m) ≤ P`(G,m) ≤ P(G,m).



Polynomial Method

In a survey article, Terrence Tao describes the polynomial
method as:

“strategy is to capture the arbitrary set of objects in the zero set
of a polynomial whose degree is in control; for instance the
degree may be bounded by a function of the number of the
objects.”

Then we use algebraic tools to understand this zero set.

This paradigm has been used for breakthrough results in
arithmetic combinatorics, additive combinatorics, number
theory, graph theory, discrete geometry, and more.



Combinatorial Nullstellentsatz

How many zeros can a n-variable polynomial on a field F
have?

Lemma
Let f ∈ F[x1, . . . , xn]. For each i, let the degree of f in xi be at
most ti , and suppose Si is a set of more than ti distinct values
from F. If f (x1, . . . , xn) = 0 for (x1, . . . , xn) ∈∏n

i=1 Si , then f is
the zero polynomial.

Can we do better? Instead of controlling the individual
degree of each variable, work with the total degree of the
polynomial.



Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that f ∈ F[x1, . . . , xn], and the degree of f is at most∑n

i=1 ti . For each i ∈ {1, . . . ,n}, suppose that Si is a set of
elements in F with |Si | > ti .

If [
∏n

i=1 x ti
i ]f 6= 0, then f (s1, . . . , sn) 6= 0 for some

(s1, . . . , sn) ∈∏n
i=1 Si .

[
∏n

i=1 x ti
i ]p denotes the element of F that is the coefficient

of the monomial
∏n

i=1 x ti
i in the expanded form of

p ∈ F[x1, . . . , xn].



Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that f ∈ F[x1, . . . , xn], and the degree of f is at most∑n

i=1 ti . For each i ∈ {1, . . . ,n}, suppose that Si is a set of
elements in F with |Si | > ti .

If [
∏n

i=1 x ti
i ]f 6= 0, then f (s1, . . . , sn) 6= 0 for some

(s1, . . . , sn) ∈∏n
i=1 Si .

Combinatorial Nullstellensatz has been applied to
numerous problems in additive combinatorics, number
theory, discrete geometry, graph theory since 1980s.



Graph Polynomial
The graph polynomial of G with V (G) = {v1, . . . , vn} is
fG(x1, x2, . . . , xn) =

∏
vi vj∈E(G), j>i(xi − xj).

fG(x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4)

fG is homogenous of degree |E(G)|.
If L is a list assignment for G with L(v) ⊂ R for v ∈ V (G),
then a proper L-coloring of G exists if and only if there is a
(c1, . . . , cn) ∈∏n

i=1 L(vi) such that fG(c1, . . . , cn) 6= 0.
fG(1,2,4,3) = (−1)(−2)(1)(−2) = −4 (In fact, χ`(C4) ≤ 2)
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Combinatorial Nullstellensatz and List Coloring

Suppose f ∈ R[x1, x2, x3, x4] is given by
f (x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4). Note
f has degree at most 4.
Suppose S1 = S2 = {1,2}, S3 = {3,4}, and S4 = {1,3}.
Since [x1x2x3x4]f = −2 6= 0, the CN tells us there is an
element in

∏4
i=1 Si for which f is nonzero.

Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list
chromatic number: χ`(G) ≤ AT (G).



Combinatorial Nullstellensatz and List Coloring

Suppose f ∈ R[x1, x2, x3, x4] is given by
f (x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4). Note
f has degree at most 4.
Suppose S1 = S2 = {1,2}, S3 = {3,4}, and S4 = {1,3}.
Since [x1x2x3x4]f = −2 6= 0, the CN tells us there is an
element in

∏4
i=1 Si for which f is nonzero.

Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list
chromatic number: χ`(G) ≤ AT (G).



Combinatorial Nullstellensatz and List Coloring

Suppose f ∈ R[x1, x2, x3, x4] is given by
f (x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4). Note
f has degree at most 4.
Suppose S1 = S2 = {1,2}, S3 = {3,4}, and S4 = {1,3}.
Since [x1x2x3x4]f = −2 6= 0, the CN tells us there is an
element in

∏4
i=1 Si for which f is nonzero.

Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list
chromatic number: χ`(G) ≤ AT (G).



Combinatorial Nullstellensatz and List Coloring

Suppose f ∈ R[x1, x2, x3, x4] is given by
f (x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4). Note
f has degree at most 4.
Suppose S1 = S2 = {1,2}, S3 = {3,4}, and S4 = {1,3}.
Since [x1x2x3x4]f = −2 6= 0, the CN tells us there is an
element in

∏4
i=1 Si for which f is nonzero.

Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list
chromatic number: χ`(G) ≤ AT (G).



Combinatorial Nullstellensatz and DP Coloring
χ`(C4) ≤ AT (C4) ≤ 2, but we know χDP(C4) > 2.
Intuitively, the issue with applying the Combinatorial
Nullstellensatz in the DP-context is that which “colors” are
different can vary from edge to edge.

This poses an issue in working with graph polynomials with
real coefficients.
To (partially) overcome this issue we define new
polynomials and view them as having coefficients in some
finite field.
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Prime Covers
Given a graph G and a function f : V (G)→ N, we say
H = (L,H) is an f -cover of G if |L(u)| = f (u) for each
u ∈ V (G). We say that G is f -DP-colorable if G is
H-colorable whenever H is an f -cover of G.
An f -cover H = (L,H) of G is a prime cover of G of order t
whenever t is a power of a prime and maxv∈V (G) f (v) ≤ t .
When the choice of t is implicitly known, we simply say
prime cover or prime f -cover.
If H = (L,H) is a prime cover of G of order t , we assume
that L(v) ⊆ {(v , j) : j ∈ Ft} for each v ∈ V (G).

We need a way of analyzing matchings between parts.
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Saturation Functions

V (G) = {v1, . . . , vn}.
H = (L,H) be a prime cover of G of order t .
For each vivj ∈ E(G), the saturation function associated
with EH(L(vi),L(vj)) is denoted σHvi vj

.

For example, σHv3v4
(0) = 1 and σHv3v4

(1) = 0.



Good Saturation Functions

We say that σHvi vj
is good if there is a β ∈ Ft such that for

each a in the domain of σHvi vj

a− σHvi vj
(a) = β

where subtraction is performed in Ft .
For a 2-fold cover, each saturation function associated with
a matching, must be good!
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Good Covers

Suppose H = (L,H) is a prime cover of G of order t .
We say that H is a good prime cover of order t if for each
vivj ∈ E(G) with j > i , the associated saturation function
σHvi vj

is good.
For example, we know every 2-fold cover is a good prime
cover of order 2.
It cannot be said that every 3-fold cover is a good prime
cover of order 3.
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Key Observations

Suppose G is a graph with V (G) = {v1, . . . , vn} and
H = (L,H) is a good prime cover of G of order t .
For each vivj ∈ E(G) with j > i , there is a βi,j ∈ Ft such
that a− σHvi vj

(a)− βi,j = 0 for each a in the domain of σHvi vj
.

Let f̂ (x1, . . . , xn) =
∏

vi vj∈E(G), j>i(xi − xj − βij).

An H-coloring of G exists if there is a
(p1, . . . ,pn) ∈∏n

i=1 Pi such that f̂ (p1,p2, . . . ,pn) 6= 0,
where Pi = {j ∈ Ft : (vi , j) ∈ L(v)}.
Note that if

∑n
i=1 ti = |E(G)|, then[∏n

i=1 x ti
i

]
f̂

=
[∏n

i=1 x ti
i

]
fG

. So, the Combinatorial

Nullstellensatz can be applied.
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Combinatorial Nullstellensatz for DP Coloring

Theorem (K., Mudrock (2020))
Let H = (L,H) be a good prime cover of order t of a graph G.
Suppose that fG ∈ Ft [x1, . . . , xn]. If [

∏n
i=1 x ti

i ]fG 6= 0 and
|L(vi)| > ti for each i ∈ [n], then there is an H-coloring of G.

With applications to:
f -DP-coloring of a cone of a connected bipartite graph.
DP-coloring analogue of a Theorem of Akbari et al. (2006)
on a sufficient condition for f-choosability in terms of
unique colorability.
Completely determine the DP-chromatic number of
squares of all cycles.
Algebraic sufficient condition for DP-3-colorability.



Three-fold Covers

Suppose that H is a prime cover of G of order 3.
If σHvi vj

is bad, there is a βi,j ∈ F3 so that a + σHvi vj
(a) = βi,j .

So, for any vivj ∈ E(G) there is a ci,j , βi,j ∈ F3 so that

a + (−1)ci,jσHvi vj
(a) = βi,j

for each a in the domain of σHvi vj
.



Three-fold Covers

Theorem (K., Mudrock (2020))
Suppose G is a graph with χDP(G) ≥ 2 and
V (G) = {v1, . . . , vn}. Let F ⊆ F3[x1, . . . , xn] be the set of at
most 2|E(G)| polynomials given by:
F =

{∏
vi vj∈E(G), j>i(xi + bi,jxj) : bi,j ∈ {−1,1}

}
.

If for each f ∈ F there exists (t1, t2, . . . , tn) ∈∏n
i=1{0,1,2} such

that [
∏n

i=1 x ti
i ]f 6= 0, then χDP(G) ≤ 3.

The number of polynomials in set F can be reduced to
2|E(G)|−|V (G)|+1, when G is a connected graph containing a
cycle.



Combinatorial Nullstellensatz for DP-color Function

Theorem (Alon, Füredi (1993))
Let F be an arbitrary field, let A1, A2, . . ., An be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that

P ∈ F[x1, . . . , xn] is a polynomial of degree d that does not
vanish on all of B. Then, the number of points in B for which P
has a non-zero value is at least min

∏n
i=1 qi where the minimum

is taken over all integers qi such that 1 ≤ qi ≤ |Ai | and∑n
i=1 qi ≥ −d +

∑n
i=1 |Ai |.

with f̂ (x1, . . . , xn) =
∏

vi vj∈E(G), j>i(xi + (−1)cij xj − βij) gives:
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Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.



Combinatorial Nullstellensatz for DP-color Function

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
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Corollary
Let G be an n-vertex planar graph of girth at least 5. Then,
PDP(G,3) ≥ 3n/6.

Previous best bounds: P`(G,3) ≥ 2n/10000 (Thomassen
(2007b)), and PDP(G,3) ≥ 2n/292 (Postle, Smith-Roberge
(2022+)).
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Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.

Corollary
Let G be an n-vertex planar graph of girth at least 5. Then,
PDP(G,3) ≥ 3n/6.

Previous best bounds: P`(G,3) ≥ 2n/10000 (Thomassen
(2007b)), and PDP(G,3) ≥ 2n/292 (Postle, Smith-Roberge
(2022+)).
Such bounds have a long history going back to Birkhoff and
Lewis (1946) Conjecture: Given an n-vertex planar graph G, for
each real number m ≥ 4,
P(G,m) ≥ m(m − 1)(m − 2)(m − 3)n−3.
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PDP(G,m) < P(G,m) whenever m ≥ NG.
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Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.

Corollary
There are infinitely many graphs G for which χDP(G) = 3,
PDP(G,3) = P(G,3), and there is an NG ∈ N such that
PDP(G,m) < P(G,m) whenever m ≥ NG.

Why is this interesting?
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PDP(G,m) ≤ P`(G,m) ≤ P(G,m).

Kirov and Naimi 2016: A question of stickiness - Do the list
color function and the corresponding chromatic polynomial
of a graph stay the same after the first point at which they
are both nonzero and equal?

Still Open. But corresponding DP color function question
has been answered negatively.



Relationships between the counting functions
PDP(G,m) ≤ P`(G,m) ≤ P(G,m).

Kirov and Naimi 2016: A question of stickiness - Do the list
color function and the corresponding chromatic polynomial
of a graph stay the same after the first point at which they
are both nonzero and equal?

Still Open. But corresponding DP color function question
has been answered negatively.

Theorem (K., Maxfield, Mudrock, Thomason (2022+))
If G is Θ(2,3,3,3,2) or Θ(2,3,3,3,3,3,2,2), then
PDP(G,3) = P(G,3) and there is an N such that
PDP(G,m) < P(G,m) for all m ≥ N.

Only two counterexamples. But now we have infinitely
many such examples!
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Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.

Corollary
Let G be an n-vertex planar graph of girth at least 5. Then,
PDP(G,3) ≥ 3n/6.

Corollary
There are infinitely many graphs G for which χDP(G) = 3,
PDP(G,3) = P(G,3), and there is an NG ∈ N such that
PDP(G,m) < P(G,m) whenever m ≥ NG.



Thank You!

Questions?


