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Equitable Coloring
The study of equitable vertex coloring began with a 1964
conjecture of Erdős and was formally introduced by Meyer
in 1973. It asks for color classes to be of roughly equal
size.

An equitable k -coloring of a graph G is a proper k -coloring
of G such that the sizes of the color classes differ by at
most 1.

If f is an equitable k -coloring of G then each of the k color
classes associated with f are of size⌊

|V (G)|
k

⌋
or
⌈
|V (G)|

k

⌉
We say G is equitably k -colorable if there exists an
equitable k -coloring of G.
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A Simple Example
An equitable 2-coloring of K3,3:

An equitable 4-coloring of K3,3:

K3,3 is not equitably 3-colorable.



Monotonicity?

The existence of an equitable k -coloring does not imply the
existence of an equitable (k + 1)-coloring. (e.g. K3,3 is
equitably 2-colorable but not equitably 3-colorable.)

We get monotonicity in k when k is large enough.

Theorem (Hajnál and Szemerédi (1970))
Every graph G is equitably k-colorable for all k ≥ ∆(G) + 1.
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List Coloring

For graph G a list assignment for G, L, assigns each
v ∈ V (G) a list, L(v), of available colors.

A proper L-coloring for G is a proper coloring, f , of G such
that f (v) ∈ L(v) for all v ∈ V (G).

If all the lists associated with the list assignment L have
size k , we say that L is a k -assignment.

A graph G is said to be k -choosable if a proper L-coloring
for G exists whenever L is a k -assignment for G.
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How to Obtain a List Analogue of Equitable Coloring?



Equitable Choosability

In 2003 Kostochka, Pelsmajer, and West introduced a list
analogue of equitable coloring called equitable
choosability. They use equitable to capture the notion that
no color is used excessively often.

Suppose L is a k -assignment for graph G. A proper
L-coloring for G is equitable if it uses each color at most
d|V (G)|/ke times. Such a coloring is called an equitable
L-coloring.

A graph is equitably k -choosable if an equitable L-coloring
for G exists whenever L is a k -assignment for G.



Equitable Choosability

In 2003 Kostochka, Pelsmajer, and West introduced a list
analogue of equitable coloring called equitable
choosability. They use equitable to capture the notion that
no color is used excessively often.

Suppose L is a k -assignment for graph G. A proper
L-coloring for G is equitable if it uses each color at most
d|V (G)|/ke times. Such a coloring is called an equitable
L-coloring.

A graph is equitably k -choosable if an equitable L-coloring
for G exists whenever L is a k -assignment for G.



Equitable Choosability

In 2003 Kostochka, Pelsmajer, and West introduced a list
analogue of equitable coloring called equitable
choosability. They use equitable to capture the notion that
no color is used excessively often.

Suppose L is a k -assignment for graph G. A proper
L-coloring for G is equitable if it uses each color at most
d|V (G)|/ke times. Such a coloring is called an equitable
L-coloring.

A graph is equitably k -choosable if an equitable L-coloring
for G exists whenever L is a k -assignment for G.



A Simple Example
Consider a copy of K1,6 and the following 3-assignment.

We seek to use no color more than d7/3e = 3 times.

In fact, K1,6 is equitably 3-choosable.
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Choosability versus Equitable Choosability
If a graph is k -choosable, then the graph must be
k -colorable.

However, it is possible for a graph to be equitably
k -choosable, but not equitably k -colorable.
For example, K1,6 is equitably 3-choosable, but it is not
equitably 3-colorable.

Suppose we don’t like this possibility.
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Proportional Choosability

Suppose L is a k -assignment for graph G, then the palette
of colors associated with L is

L =
⋃

v∈V (G)

L(v)

For each c ∈ L, the multiplicity of c in L, denoted ηL(c) or
simply η(c) when the list assignment is clear, is
η(c) = |{v : v ∈ V (G), c ∈ L(v)}|.

A proportional L-coloring for G is a proper L-coloring, f , of
G such that for each c ∈ L,

|f−1({c})| =

⌊
η(c)

k

⌋
or

⌈
η(c)

k

⌉
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An Example

Question: Can you think of a 4-assignment, L, for K4,4 such that there is
no proportional L-coloring?
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An Example contd.

Note: 1 has to be used twice, while all the remaining six colors
have to be used exactly once each.



Proportional Choosability contd.

G is proportionally k -choosable if for any k -assignment, L,
for G, there is a proportional L-coloring for G.

Proposition (K., Mudrock, Pelsmajer, Reiniger)
If G is proportionally k-choosable, then
G is equitably k-choosable and G is equitably k-colorable.
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Monotone Property

Lemma (K., Mudrock, Pelsmajer, Reiniger)
Suppose H is a subgraph of G. If G is proportionally
k-choosable, then H is proportionally k-choosable.

This property also holds for k -colorability and
k -choosability.
This property does not hold in the context of equitable
coloring. For example, K3,3 is equitably 2-colorable, but
K1,3 is not equitably 2-colorable.
This property does not hold in the context of equitable
choosability. For example, K1,6 is equitably 3-choosable,
but K1,5 is not equitably 3-choosable.
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Monotonicity in k

Lemma (K., Mudrock, Pelsmajer, Reiniger)
If G is proportionally k-choosable, then G is proportionally
(k + 1)-choosable.

This property holds in the context of k -colorability and
k -choosability.
This property does not hold in the context of equitable
coloring (e.g. K3,3).
This property does not hold in the context of equitable
choosability. For example, K1,9 is equitably 4-choosable,
but it is not equitably 5-choosable.
The proof relies on ideas from matching theory.
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Proportional Choice Number

The fact that we have monotonicity in k when it comes to
proportional choosability leads us to introduce a graph
invariant.

For graph G, the proportional choice number of G, denoted
χpc(G), is the smallest k such that G is proportionally
k -choosable.

Proposition (K., Mudrock, Pelsmajer, Reiniger)
If G is not a complete graph, then χpc(G) ≤ |V (G)| − 1.
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Proportional Choosability of Small Graphs

Theorem (K., Mudrock, Pelsmajer, Reiniger)
For any graph G,

χpc(G) ≤ ∆(G) +
|V (G)|

2
.

We know χpc(G) ≥ (∆(G) + 1)/2

To prove this Theorem, we need two Lemmas.
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Rough Proof Idea
We can find an appropriate L-coloring for G that doesn’t
use any color excessively.

Lemma (K., Mudrock, Pelsmajer, Reiniger)
Let L be a k-assignment for a graph G with
k ≥ ∆(G) + |V (G)|/2. There is a proper L-coloring of G that
uses no color c ∈ L more than dη(c)/ke times.

We give an algorithmic argument to convert an equitable
L-coloring into a proportional L-coloring for a k -assignment
L of G with every color having multiplicity less than 2k .

Lemma (K., Mudrock, Pelsmajer, Reiniger)
Suppose L is a k-assignment for G with maxc∈L η(c) < 2k. If
there is a proper L-coloring, f , of G with |f−1({c})| ≤ dη(c)/ke
for each c ∈ L, then G is proportionally L-colorable.
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Proportional Choosability of a Star

Proposition (Kaul, M., Pelsmajer, Reiniger)
K1,m is proportionally k-choosable if and only if k ≥ 1 + m/2.

Note that the “ =⇒ ” direction is easy. If k < 1 + m/2, then
k ≤ (1 + m)/2 and b(m + 1)/kc ≥ 2.

So, K1,m is not even equitably k -colorable when
k ≤ (m + 1)/2.
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Star Proof Outline

Let G = K1,m, and L be a k -assignment for G with
k = 1 + dm/2e.
Let {v0} be the partite set of size 1.
Suppose L(v0) contains only colors with multiplicity greater
than k . In this case we apply:
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Star Proof Outline contd.

Suppose L(v0) contains a color with multiplicity at most k .
In this case we use some classic matching theory.
Recall the following classic Corollaries of Hall’s Theorem.

Corollary
For k > 0, every k-regular bipartite multigraph has a perfect
matching.

Corollary
If B is a k-regular bipartite multigraph, then E(B) can be
partitioned into k perfect matchings.
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A Comment on Disconnected Graphs

Understanding proportional choosability may be difficult on
a disconnected graph even when we completely
understand the proportional choosability of each
component.

For m ≥ 2, since m ≥ 1 + m/2, we know K1,m is
proportionally m-choosable.

Question: Is the disjoint union of many copies of K1,m
proportionally m-choosable?

No!
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A Comment on Disconnected Graphs contd.

Proposition (K., Mudrock, Pelsmajer, Reiniger)
Let H1,H2, . . . ,Hm be m pairwise vertex disjoint copies of K1,m.
If G =

∑m
i=1 Hi , then G is not proportionally m-choosable.



A Result for Disconnected Graphs

Another result we have obtained via the matching ideas
involves the disjoint union of cliques.

Theorem (K., Mudrock, Pelsmajer, Reiniger)
If G is a graph such that each of its components have at most t
vertices, then G is proportionally t-choosable.

Corollary (K., Mudrock, Pelsmajer, Reiniger)
Suppose G is the disjoint union of cliques and the largest
component of G has t vertices. Then G is proportionally
t-choosable.
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Proportional 2-Choosability

Characterizations of 2-colorable, equitably 2-colorable, and
2-choosable graphs are known.

Theorem (K., Mudrock, Pelsmajer, Reiniger)
Graph G is proportionally 2-choosable if and only if G is a
disjoint union of paths where the largest component of G has at
most 5 vertices and all the other components of G have 2 or
fewer vertices.

The “ ⇐= ” direction is tedious and technical.
We have already done all the work for the “ =⇒ ” direction.
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Proportional 2-Choosability contd.
Let G be a proportionally 2-choosable graph.

We know K1,2k−1 is not proportionally k -choosable for each
k . So, χpc(H) > ∆(H)+1

2 .
Hence, Proportional 2-choosable graphs have ∆(G) ≤ 2.

Since proportional 2-choosability implies 2-colorability, G
consists of paths and even cycles.

We know Km,m is not proportionally m-choosable for each
m, so G can not contain a C4.

We know disjoint union of K1,k is not proportionally
k -choosable, so G can not have two disjoint copies of K1,2.
This eliminates all remaining cycles, and all Pn with n > 2
except one copy of P5.
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Thank You!
Questions?
[Proportional Analogue of Hajnal-Szemeredi] For any graph G, is
G proportionally k -choosable whenever k ≥ ∆(G) + 1?
[Proportional Analogue of Obha] If G is equitably k -colorable and
|V (G)| ≤ 2k − 1, must it be that G is proportionally k -choosable?
[Paths!] For each n ≥ 6, what is the value of χpc(Pn)? We know
its between 3 and n/2 + 2. Does there exist a constant C such
that χpc(Pn) ≤ C for all n?
[Disjoint Unions] Suppose G is proportionally k -choosable. If H
is a graph that is vertex disjoint from G with |V (H)| ≤ k , must it
be the case that the disjoint union of these graphs, G + H, is
proportionally k -choosable?

[Equitable Choosability] Find a characterization of equitably
2-choosable graphs. (In 2004 Wang and Lih claimed that a
connected graph G is equitably 2-choosable if and only if (1) G is
2-choosable and (2) G has a bipartition X ,Y such that
||X | − |Y || ≤ 1. But we have a counterexample to this.)
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