The Gap Between the List-Chromatic and Chromatic Numbers

Hemanshu Kaul

Illinois Institute of Technology
www.math.iit.edu/~kaul

kaul@iit.edu

Joint work with
Jeffrey Mudrock (College of Lake County)
List Coloring

List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.

For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An acceptable L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

When an acceptable L-coloring for G exists, we say that G is L-colorable or L-choosable.
List Coloring

- List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.

- For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An acceptable L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

- When an acceptable L-coloring for G exists, we say that G is L-colorable or L-choosable.
List Coloring

List coloring was introduced independently by Vizing (1976) and Erdős, Rubin, and Taylor (1979), as a generalization of usual graph coloring.

For graph G suppose each $v \in V(G)$ is assigned a list, $L(v)$, of colors. We refer to L as a list assignment. An acceptable L-coloring for G is a proper coloring, f, of G such that $f(v) \in L(v)$ for all $v \in V(G)$.

When an acceptable L-coloring for G exists, we say that G is L-colorable or L-choosable.
List Chromatic Number

- The list chromatic number of a graph G, written $\chi_\ell(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.

- When $\chi_\ell(G) = k$ we say that G has list chromatic number k or that G is k-choosable.

- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then
 \[\chi(G) \leq \chi_\ell(G). \]

- A graph is chromatic choosable if $\chi(G) = \chi_\ell(G)$. But we know the gap between $\chi(G)$ and $\chi_\ell(G)$ can be arbitrarily large.
List Chromatic Number

The list chromatic number of a graph G, written $\chi_\ell(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.

When $\chi_\ell(G) = k$ we say that G has list chromatic number k or that G is k-choosable.

We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

$$
\chi(G) \leq \chi_\ell(G).
$$

A graph is chromatic choosable if $\chi(G) = \chi_\ell(G)$. But we know the gap between $\chi(G)$ and $\chi_\ell(G)$ can be arbitrarily large.
List Chromatic Number

- The list chromatic number of a graph G, written $\chi_\ell(G)$, is the smallest k such that G is L-colorable whenever $|L(v)| \geq k$ for each $v \in V(G)$.

- When $\chi_\ell(G) = k$ we say that G has list chromatic number k or that G is k-choosable.

- We immediately have that if $\chi(G)$ is the typical chromatic number of a graph G, then

 $\chi(G) \leq \chi_\ell(G)$.

- A graph is chromatic choosable if $\chi(G) = \chi_\ell(G)$. But we know the gap between $\chi(G)$ and $\chi_\ell(G)$ can be arbitrarily large.
A Motivating Result

Theorem (Folklore, 1970s)
\[\chi_\ell(K_{a,b}) = a + 1 \text{ if and only if } b \geq a^a \]

- When \(b \geq a \), we know \(\chi_\ell(K_{a,b}) \leq \text{Col}(K_{a,b}) = a + 1 \).
- So, for fixed \(a \), this theorem tells us the smallest value of \(b \) such that \(\chi_\ell(K_{a,b}) \) is as large as possible (i.e., far from being chromatic-choosable).

We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2: \[\chi(K_{a,a^a}) = \chi(K_{1,1}) = 2 = \chi_\ell(K_{1,1}) < 3 = \chi_\ell(K_{2,4}) < 4 = \chi_\ell(K_{3,27}) < \ldots < a + 1 = \chi_\ell(K_{a,a^a}) \]

Question: Can we construct such a sequence starting from chromatic number \(k > 2 \)?
We will give an answer motivated by the Theorem above.
A Motivating Result

Theorem (Folklore, 1970s)
\[\chi_{\ell}(K_{a,b}) = a + 1 \text{ if and only if } b \geq a^a \]

- When \(b \geq a \), we know \(\chi_{\ell}(K_{a,b}) \leq \text{Col}(K_{a,b}) = a + 1 \).
- So, for fixed \(a \), this theorem tells us the smallest value of \(b \) such that \(\chi_{\ell}(K_{a,b}) \) is as large as possible (i.e., far from being chromatic-choosable).

We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2:
\[\chi(K_{a,a^a}) = \chi(K_{1,1}) = 2 = \chi_{\ell}(K_{1,1}) < 3 = \chi_{\ell}(K_{2,4}) < 4 = \chi_{\ell}(K_{3,27}) < \ldots < a+1 = \chi_{\ell}(K_{a,a^a}) \]

Question: Can we construct such a sequence starting from chromatic number \(k > 2 \)?
We will give an answer motivated by the Theorem above.
A Motivating Result

Theorem (Folklore, 1970s)
\[\chi(\ell)(K_{a,b}) = a + 1 \text{ if and only if } b \geq a. \]

- When \(b \geq a \), we know \(\chi(\ell)(K_{a,b}) \leq \text{Col}(K_{a,b}) = a + 1 \).
- So, for fixed \(a \), this theorem tells us the smallest value of \(b \) such that \(\chi(\ell)(K_{a,b}) \) is as large as possible (i.e., far from being chromatic-choosable).

- We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2:
 \[
 \chi(K_{a,a^a}) = \chi(K_{1,1}) = 2 = \chi(\ell)(K_{1,1}) < 3 = \chi(\ell)(K_{2,4}) < 4 = \chi(\ell)(K_{3,27}) < \ldots < a + 1 = \chi(\ell)(K_{a,a^a})
 \]

Question: Can we construct such a sequence starting from chromatic number \(k > 2 \)?
We will give an answer motivated by the Theorem above.
A Motivating Result

Theorem (Folklore, 1970s)
\[\chi_\ell(K_{a,b}) = a + 1 \text{ if and only if } b \geq a^a \]

- When \(b \geq a \), we know \(\chi_\ell(K_{a,b}) \leq \text{Col}(K_{a,b}) = a + 1 \).
- So, for fixed \(a \), this theorem tells us the smallest value of \(b \) such that \(\chi_\ell(K_{a,b}) \) is as large as possible (i.e., far from being chromatic-choosable).

We can construct a sequence of graphs with increasing list chromatic number starting from chromatic number 2:
\[\chi(K_{a,a^a}) = \chi(K_{1,1}) = 2 = \chi_\ell(K_{1,1}) < 3 = \chi_\ell(K_{2,4}) < 4 = \chi_\ell(K_{3,27}) < \ldots < a + 1 = \chi_\ell(K_{a,a^a}) \]

Question: Can we construct such a sequence starting from chromatic number \(k > 2 \)?
We will give an answer motivated by the Theorem above.
Cartesian Product of Graphs

- The **Cartesian Product** $G \square H$ of graphs G and H is a graph with vertex set $V(G) \times V(H)$.

 Two vertices (u, v) and (u', v') are adjacent in $G \square H$ if either $u = u'$ and $vv' \in E(H)$ or $uu' \in E(G)$ and $v = v'$.

- Here’s $C_5 \square P_3$:

![Graph Diagram]

- Every connected graph has a unique factorization under the Cartesian product (that can be found in linear time and space).

- $\chi(G \square H) = \max\{\chi(G), \chi(H)\}.$
The Cartesian Product $G \Box H$ of graphs G and H is a graph with vertex set $V(G) \times V(H)$. Two vertices (u, v) and (u', v') are adjacent in $G \Box H$ if either $u = u'$ and $vv' \in E(H)$ or $uu' \in E(G)$ and $v = v'$.

Here's $C_5 \Box P_3$:

Every connected graph has a unique factorization under the Cartesian product (that can be found in linear time and space).

$\chi(G \Box H) = \max\{\chi(G), \chi(H)\}$.
Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))

\[\chi_\ell(G \Box H) \leq \min\{\chi_\ell(G) + \text{Col}(H), \text{Col}(G) + \chi_\ell(H)\} - 1 \]

An easy inductive argument proves this theorem.

For fixed \(G, a: \)

\[\chi_\ell(G \Box K_{a,b}) \leq \chi_\ell(G) + \text{Col}(K_{a,b}) - 1 = \chi_\ell(G) + a \]

Question: Does there always exist a \(b \) such that this upper bound is attained?
Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
\[\chi_{\ell}(G \square H) \leq \min\{\chi_{\ell}(G) + \text{Col}(H), \text{Col}(G) + \chi_{\ell}(H)\} - 1 \]

An easy inductive argument proves this theorem.

For fixed \(G, a: \)
\[\chi_{\ell}(G \square K_{a,b}) \leq \chi_{\ell}(G) + \text{Col}(K_{a,b}) - 1 = \chi_{\ell}(G) + a \]

Question: Does there always exist a \(b \) such that this upper bound is attained?
Coloring the Cartesian Product of Graphs

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))

\[\chi_\ell(G \Box H) \leq \min\{\chi_\ell(G) + \text{Col}(H), \text{Col}(G) + \chi_\ell(H)\} - 1 \]

An easy inductive argument proves this theorem.

For fixed \(G, a \):

\[\chi_\ell(G \Box K_{a,b}) \leq \chi_\ell(G) + \text{Col}(K_{a,b}) - 1 = \chi_\ell(G) + a \]

Question: Does there always exist a \(b \) such that this upper bound is attained?
Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))

\[\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (\chi_\ell(G) + a - 1)^{a|V(G)|} \]

Question: Can we improve the lower bound on \(b \)?

Question: For which graphs \(G \), can we give a characterization of such \(b \)?

The folklore theorem from earlier gives the characterization when \(G = K_1 \).

- Our main tools are list color function and strongly chromatic choosable graphs.
Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
\[
\chi \ell(G \Box K_{a,b}) = \chi \ell(G) + a, \text{ whenever } b \geq (\chi \ell(G) + a - 1)^{\frac{a}{|V(G)|}}
\]

Question: Can we improve the lower bound on \(b\)?

Question: For which graphs \(G\), can we give a characterization of such \(b\)?

The folklore theorem from earlier gives the characterization when \(G = K_1\).

- Our main tools are list color function and strongly chromatic choosable graphs.
Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))
\[\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (\chi_\ell(G) + a - 1)^{a|V(G)|} \]

Question: Can we improve the lower bound on \(b \)?

Question: For which graphs \(G \), can we give a characterization of such \(b \)?

The folklore theorem from earlier gives the characterization when \(G = K_1 \).

- Our main tools are list color function and strongly chromatic choosable graphs.
Another Motivating Result

Theorem (Borowiecki, Jendrol, Kral, Miskuf (2006))

\[\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (\chi_\ell(G) + a - 1)^a|V(G)|. \]

Question: Can we improve the lower bound on \(b \)?

Question: For which graphs \(G \), can we give a characterization of such \(b \)?

The folklore theorem from earlier gives the characterization when \(G = K_1 \).

- Our main tools are list color function and strongly chromatic choosable graphs.
The List Color Function

- For $k \in \mathbb{N}$, let $P(G, k)$ denote the number of proper colorings of G with colors from $\{1, \ldots, k\}$.

- It is known that $P(G, k)$ is a polynomial in k of degree $|V(G)|$. We call $P(G, k)$ the chromatic polynomial of G.

- The list color function of G, $P^\ell(G, k)$, is the minimum number of k-list colorings of G where the minimum is taken over all k-list assignments for G.

- Recall, $P(K_{2,4}, 2) = 2$, and yet $P^\ell(K_{2,4}, 2) = 0$.
- For every graph G and each $k \in \mathbb{N}$, $P^\ell(G, k) \leq P(G, k)$.
The List Color Function

For $k \in \mathbb{N}$, let $P(G, k)$ denote the number of proper colorings of G with colors from $\{1, \ldots, k\}$.

It is known that $P(G, k)$ is a polynomial in k of degree $|V(G)|$. We call $P(G, k)$ the chromatic polynomial of G.

The list color function of G, $P_\ell(G, k)$, is the minimum number of k-list colorings of G where the minimum is taken over all k-list assignments for G.

Recall, $P(K_{2,4}, 2) = 2$, and yet $P_\ell(K_{2,4}, 2) = 0$.
For every graph G and each $k \in \mathbb{N}$, $P_\ell(G, k) \leq P(G, k)$.
The List Color Function

- For \(k \in \mathbb{N} \), let \(P(G, k) \) denote the number of proper colorings of \(G \) with colors from \(\{1, \ldots, k\} \).

- It is known that \(P(G, k) \) is a polynomial in \(k \) of degree \(|V(G)| \). We call \(P(G, k) \) the chromatic polynomial of \(G \).

- The list color function of \(G \), \(P_\ell(G, k) \), is the minimum number of \(k \)-list colorings of \(G \) where the minimum is taken over all \(k \)-list assignments for \(G \).

- Recall, \(P(K_{2,4}, 2) = 2 \), and yet \(P_\ell(K_{2,4}, 2) = 0 \).

- For every graph \(G \) and each \(k \in \mathbb{N} \), \(P_\ell(G, k) \leq P(G, k) \).
Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))

If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_\ell(G, k) = P(G, k)$ for each $k \in \mathbb{N}$.

$P_\ell(G, k)$ need not be a polynomial.

Theorem (Thomassen (2009))

For any graph G, $P_\ell(G, k) = P(G, k)$ provided $k > |V(G)|^{10}$.

Theorem (Wang, Qian, Yan (2017))

For any connected graph G with m edges, $P_\ell(G, k) = P(G, k)$ provided $k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m - 1)$.
Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_{\ell}(G, k) = P(G, k)$ for each $k \in \mathbb{N}$.

$P_{\ell}(G, k)$ need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, $P_{\ell}(G, k) = P(G, k)$ provided $k > |V(G)|^{10}$.

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P_{\ell}(G, k) = P(G, k)$ provided $k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m - 1)$.
Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_\ell(G, k) = P(G, k)$ for each $k \in \mathbb{N}$.

$P_\ell(G, k)$ need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, $P_\ell(G, k) = P(G, k)$ provided $k > |V(G)|^{10}$.

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P_\ell(G, k) = P(G, k)$ provided $k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m - 1)$.
Some Results on the List Color Function

Theorem (Kostochka and Sidorenko (1990))
If G is a chordal graph (i.e. all cycles contained in G with 4 or more vertices have a chord), then $P_\ell(G, k) = P(G, k)$ for each $k \in \mathbb{N}$.

$P_\ell(G, k)$ need not be a polynomial.

Theorem (Thomassen (2009))
For any graph G, $P_\ell(G, k) = P(G, k)$ provided $k > |V(G)|^{10}$.

Theorem (Wang, Qian, Yan (2017))
For any connected graph G with m edges, $P_\ell(G, k) = P(G, k)$ provided $k > \frac{m-1}{\ln(1+\sqrt{2})} \approx 1.135(m-1)$.
First Result

Theorem (K. and Mudrock)

\[\chi_{\ell}(G \square K_{a,b}) = \chi_{\ell}(G) + a, \text{ whenever } b \geq (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a \]

- If \(G \) has at least one edge, then
 \[P_{\ell}(G, \chi_{\ell}(G) + a - 1) < (\chi_{\ell}(G) + a - 1)|V(G)|; \] giving a (significant) improvement over the Borowiecki et al. bound.

- We can in fact prove:

 Theorem (K. and Mudrock)

 Suppose \(H \) is a bipartite graph with partite sets \(A \) and \(B \) where \(|A| = a \) and \(|B| = b \). Let \(\delta = \min_{v \in B} d_H(v) \). If \(b \geq (P_{\ell}(G, \chi_{\ell}(G) + \delta - 1))^a \), then \(\chi_{\ell}(G \square H) \geq \chi_{\ell}(G) + \delta \).
First Result

Theorem (K. and Mudrock)

\[\chi_{\ell}(G \Box K_{a,b}) = \chi_{\ell}(G) + a, \text{ whenever } b \geq (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a \]

- If \(G \) has at least one edge, then
 \[P_{\ell}(G, \chi_{\ell}(G) + a - 1) < (\chi_{\ell}(G) + a - 1)^{|V(G)|}; \text{ giving a (significant) improvement over the Borowiecki et al. bound.} \]

- We can in fact prove:

Theorem (K. and Mudrock)

Suppose \(H \) is a bipartite graph with partite sets \(A \) and \(B \) where \(|A| = a \) and \(|B| = b \). Let \(\delta = \min_{v \in B} d_H(v) \).

If \(b \geq (P_{\ell}(G, \chi_{\ell}(G) + \delta - 1))^a \), then \(\chi_{\ell}(G \Box H) \geq \chi_{\ell}(G) + \delta \).
Theorem (K. and Mudrock)
\[\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a \]

- If \(G\) has at least one edge, then
 \[P_\ell(G, \chi_\ell(G) + a - 1) < (\chi_\ell(G) + a - 1)^{|V(G)|}; \text{ giving a (significant) improvement over the Borowiecki et al. bound.} \]

- We can in fact prove:

Theorem (K. and Mudrock)

\textit{Suppose \(H\) is a bipartite graph with partite sets \(A\) and \(B\) where} \(|A| = a \text{ and } |B| = b\). \textit{Let} \(\delta = \min_{v \in B} d_H(v)\). \textit{If} \(b \geq (P_\ell(G, \chi_\ell(G) + \delta - 1))^a\), \textit{then} \(\chi_\ell(G \Box H) \geq \chi_\ell(G) + \delta\).
Beyond First Result

Theorem (K. and Mudrock (2018+))

\[\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a \]

Question: When is this bound sharp? Can we find graphs \(G \) such this bound characterizes \(\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a \)?
Beyond First Result

Theorem (K. and Mudrock (2018+))
\[\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq \left(P_\ell(G, \chi_\ell(G) + a - 1) \right)^a \]

Question: When is this bound sharp? Can we find graphs \(G \) such this bound characterizes \(\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a \)?
Strong Chromatic Choosability

- List assignment, \(L \), for \(G \) is a **bad \(k \)-assignment** for \(G \) if \(G \) is not \(L \)-colorable and \(|L(v)| = k \) for each \(v \in V(G) \).

- List assignment, \(L \), is **constant** if \(L(v) \) is the same for each \(v \in V(G) \).

- A constant (and bad) 2-assignment for a \(C_5 \):

 ![C_5 Graph](image)

- A graph \(G \) is said to be **strong \(k \)-chromatic choosable** if \(\chi(G) = k \) and every bad \((k - 1) \)-assignment for \(G \) is constant.
Strong Chromatic Choosability

- List assignment, L, for G is a bad k-assignment for G if G is not L-colorable and $|L(v)| = k$ for each $v \in V(G)$.
- List assignment, L, is constant if $L(v)$ is the same for each $v \in V(G)$.
- A constant (and bad) 2-assignment for a C_5:

A graph G is said to be strong k-chromatic choosable if $\chi(G) = k$ and every bad $(k - 1)$-assignment for G is constant.
Strong Chromatic Choosability

- List assignment, L, for G is a **bad k-assignment** for G if G is not L-colorable and $|L(v)| = k$ for each $v \in V(G)$.
- List assignment, L, is **constant** if $L(v)$ is the same for each $v \in V(G)$.
- A constant (and bad) 2-assignment for a C_5:

![Diagram of a cycle graph C_5 with list assignments for each vertex.]

- A graph G is said to be **strong k-chromatic choosable** if $\chi(G) = k$ and every bad $(k - 1)$-assignment for G is constant.
Strong Chromatic Choosability

A graph G is said to be strong k-chromatic choosable if $\chi(G) = k$ and if every bad $(k - 1)$-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)
Let G be a strong k-chromatic choosable graph. Then
(i) $\chi(G) = k = \chi_\ell(G)$ (i.e. G is chromatic choosable),
(ii) $\chi(G - \{v\}) \leq \chi_\ell(G - \{v\}) < k$ for any $v \in V(G)$,
(iii) $k = 2$ if and only if G is K_2,
(iv) $k = 3$ if and only if G is an odd cycle,
(v) $G \lor K_p$ is strong $(k + p)$-chromatic choosable for any $p \in \mathbb{N}$.

We essentially have a notion of vertex-criticality for chromatic-choosability.

There are many infinite families of graphs that satisfy this notion.
Strong Chromatic Choosability

A graph G is said to be **strong k-chromatic choosable** if $\chi(G) = k$ and if every bad $(k - 1)$-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then

(i) $\chi(G) = k = \chi_\ell(G)$ (i.e. G is chromatic choosable),
(ii) $\chi(G - \{v\}) \leq \chi_\ell(G - \{v\}) < k$ for any $v \in V(G)$,
(iii) $k = 2$ if and only if G is K_2,
(iv) $k = 3$ if and only if G is an odd cycle,
(v) $G \vee K_p$ is strong $(k + p)$-chromatic choosable for any $p \in \mathbb{N}$.

- We essentially have a notion of vertex-criticality for chromatic-choosability.
- There are many infinite families of graphs that satisfy this notion.
A graph G is said to be strong k-chromatic choosable if $\chi(G) = k$ and if every bad $(k - 1)$-assignment for G is constant.

Proposition (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then

(i) $\chi(G) = k = \chi_\ell(G)$ (i.e. G is chromatic choosable),
(ii) $\chi(G - \{v\}) \leq \chi_\ell(G - \{v\}) < k$ for any $v \in V(G)$,
(iii) $k = 2$ if and only if G is K_2,
(iv) $k = 3$ if and only if G is an odd cycle,
(v) $G \lor K_p$ is strong $(k + p)$-chromatic choosable for any $p \in \mathbb{N}$.

We essentially have a notion of vertex-criticality for chromatic-choosability.

There are many infinite families of graphs that satisfy this notion.
Second Result

Theorem (K. and Mudrock)
\[\chi_\ell(G\Box K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a\]

Theorem (K. and Mudrock)
If \(G\) is a strong \(k\)-chromatic choosable graph and \(k \geq a + 1\), then \(\chi_\ell(G\Box K_{a,b}) = \chi_\ell(G) + a\) if and only if \(b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a\).

The proof idea is:
If \(L\) is a \((\chi_\ell(G) + a - 1)\)-assignment for \(G\Box K_{a,b}\), there is at most one proper \(L\)-coloring of the copies of \(G\) corresponding to the partite set of size \(a\) that leads to a bad assignment for a given “bottom” copy of \(G\).
We show if two such colorings existed, we could obtain a proper \(a\)-coloring of \(G\).
A simple counting argument completes the proof that there exists a proper \(L\)-coloring of \(G\Box K_{a,b}\) when \(b < (P_\ell(G, \chi_\ell(G) + a - 1))^a\).
Second Result

Theorem (K. and Mudrock)
\[\chi_{\ell}(G \Box K_{a,b}) = \chi_{\ell}(G) + a, \text{ whenever } b \geq (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a \]

Theorem (K. and Mudrock)

If \(G \) is a strong \(k \)-chromatic choosable graph and \(k \geq a + 1 \), then \(\chi_{\ell}(G \Box K_{a,b}) = \chi_{\ell}(G) + a \) if and only if \(b \geq (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a \).

The proof idea is:

If \(L \) is a \((\chi_{\ell}(G) + a - 1) \)-assignment for \(G \Box K_{a,b} \), there is at most one proper \(L \)-coloring of the copies of \(G \) corresponding to the partite set of size \(a \) that leads to a bad assignment for a given “bottom” copy of \(G \).

We show if two such colorings existed, we could obtain a proper \(a \)-coloring of \(G \).

A simple counting argument completes the proof that there exists a proper \(L \)-coloring of \(G \Box K_{a,b} \) when \(b < (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a \).
Second Result

Theorem (K. and Mudrock)
\[\chi_\ell(G \boxtimes K_{a,b}) = \chi_\ell(G) + a, \text{ whenever } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a \]

Theorem (K. and Mudrock)
If \(G \) is a strong \(k \)-chromatic choosable graph and \(k \geq a + 1 \), then \(\chi_\ell(G \boxtimes K_{a,b}) = \chi_\ell(G) + a \) if and only if \(b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a \).

The proof idea is:
If \(L \) is a \((\chi_\ell(G) + a - 1)\)-assignment for \(G \boxtimes K_{a,b} \), there is at most one proper \(L \)-coloring of the copies of \(G \) corresponding to the partite set of size \(a \) that leads to a bad assignment for a given “bottom” copy of \(G \).
We show if two such colorings existed, we could obtain a proper \(a \)-coloring of \(G \).
A simple counting argument completes the proof that there exists a proper \(L \)-coloring of \(G \boxtimes K_{a,b} \) when \(b < (P_\ell(G, \chi_\ell(G) + a - 1))^a \).
Corollaries to Second Result

Theorem (K. and Mudrock)

If G *is a strong* k-chromatic choosable graph and $k \geq a + 1$, *then* $\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a$ *if and only if*
$$b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a.$$

Corollary (K. and Mudrock)

$\chi_\ell(C_{2t+1} \Box K_2, b) = 5$ *if and only if*
$$b \geq (P_\ell(C_{2t+1}, 4))^2 = (3^{2t+1} - 3)^2 = 9(9^t - 1)^2.$$

Corollary (K. and Mudrock)

For $n \geq a + 1$, $\chi_\ell(K_n \Box K_{a,b}) = n + a$ *if and only if*
$$b \geq (P_\ell(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a.$$
Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then $\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a$ if and only if $b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a$.

Corollary (K. and Mudrock)

$\chi_\ell(C_{2t+1} \Box K_{2,b}) = 5$ if and only if $b \geq (P_\ell(C_{2t+1}, 4))^2 = (3^{2t+1} - 3)^2 = 9(9^t - 1)^2$.

Corollary (K. and Mudrock)

For $n \geq a + 1$, $\chi_\ell(K_n \Box K_{a,b}) = n + a$ if and only if $b \geq (P_\ell(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a$.
Corollaries to Second Result

Theorem (K. and Mudrock)
If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then $\chi^\ell(G \Box K_{a,b}) = \chi^\ell(G) + a$ if and only if $b \geq (P^\ell(G, \chi^\ell(G) + a - 1))^a$.

Corollary (K. and Mudrock)
$\chi^\ell(C_{2t+1} \Box K_{2,b}) = 5$ if and only if $b \geq (P^\ell(C_{2t+1}, 4))^2 = (3^{2t+1} - 3)^2 = 9(9^t - 1)^2$.

Corollary (K. and Mudrock)
For $n \geq a + 1$, $\chi^\ell(K_n \Box K_{a,b}) = n + a$ if and only if $b \geq (P^\ell(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a$.
Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then

$$
\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a \text{ if and only if } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a.
$$

Corollary (K. and Mudrock)

For $n \geq a + 1$, $\chi_\ell(K_n \Box K_{a,b}) = n + a$ if and only if

$$
b \geq (P_\ell(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a.
$$

This corollary shows the bound in the Theorem is sharp for all a.

We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number n:

$$
\chi(K_n \Box K_{a,b}) = \chi(K_n) = n = \chi_\ell(K_n \Box K_{0,1}) < n + 1 = \chi_\ell(K_n \Box K_{1,n!}) < n + 2 = \chi_\ell(K_n \Box K_{2,((n+1)!)^2}) < \ldots
$$
Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then
\[\chi_{\ell}(G \boxtimes K_{a,b}) = \chi_{\ell}(G) + a \text{ if and only if } b \geq (P_{\ell}(G, \chi_{\ell}(G) + a - 1))^a. \]

Corollary (K. and Mudrock)

For $n \geq a + 1$, \[\chi_{\ell}(K_n \boxtimes K_{a,b}) = n + a \text{ if and only if } b \geq (P_{\ell}(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!} \right)^a \]

This corollary shows the bound in the Theorem is sharp for all a.

We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number n:
\[\chi(K_n \boxtimes K_{a,b}) = \chi(K_n) = n = \chi_{\ell}(K_n \boxtimes K_{0,1}) < n + 1 = \chi_{\ell}(K_n \boxtimes K_{1,n!}) < n + 2 = \chi_{\ell}(K_n \boxtimes K_{2,((n+1)!)^2}) < \ldots \]
Corollaries to Second Result

Theorem (K. and Mudrock)
If \(G \) is a strong \(k \)-chromatic choosable graph and \(k \geq a + 1 \), then
\[
\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a \text{ if and only if } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a.
\]

Corollary (K. and Mudrock)
For \(n \geq a + 1 \), \(\chi_\ell(K_n \Box K_{a,b}) = n + a \) if and only if
\[
b \geq (P_\ell(K_n, n + a - 1))^a = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a
\]
This corollary shows the bound in the Theorem is sharp for all \(a \).

- We can construct an arbitrarily long sequence of graphs with increasing list chromatic number starting from chromatic number \(n \):
\[
\chi(K_n \Box K_{a,b}) = \chi(K_n) = n = \chi_\ell(K_n \Box K_{0,1}) < n + 1 = \chi_\ell(K_n \Box K_{1,n!}) < n + 2 = \chi_\ell(K_n \Box K_{2,((n+1)!)^2}) < \ldots
\]
Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then $\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a$ if and only if $b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a$.

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$\chi_\ell(G \Box K_{1,s}) = \begin{cases} k & \text{if } s < P_\ell(G, k) \\ k + 1 & \text{if } s \geq P_\ell(G, k). \end{cases}$$
Corollaries to Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then $\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a$ if and only if

$$b \geq \left(P_\ell(G, \chi_\ell(G) + a - 1)\right)^a.$$

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$\chi_\ell(G \Box K_{1,s}) = \begin{cases}
 k & \text{if } s < P_\ell(G, k) \\
 k + 1 & \text{if } s \geq P_\ell(G, k).
\end{cases}$$
Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$
\chi_\ell(G \square K_1,s) = \begin{cases}
 k & \text{if } s < P_\ell(G,k) \\
 k + 1 & \text{if } s \geq P_\ell(G,k).
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell(C_{2t+1} \square K_1,s) = \begin{cases}
 3 & \text{if } s < 2^{2t+1} - 2 \\
 4 & \text{if } s \geq 2^{2t+1} - 2.
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell(K_n \square K_1,s) = \begin{cases}
 n & \text{if } s < n! \\
 n + 1 & \text{if } s \geq n!.
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell((K_n \lor C_{2t+1}) \square K_1,s) = \begin{cases}
 n + 3 & \text{if } s < \frac{1}{3}(n + 3)!(4^t - 1) \\
 n + 4 & \text{if } s \geq \frac{1}{3}(n + 3)!(4^t - 1).
\end{cases}
$$
Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$
\chi_\ell(G \Box K_1, s) = \begin{cases}
 k & \text{if } s < P_\ell(G, k) \\
 k + 1 & \text{if } s \geq P_\ell(G, k).
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell(C_{2t+1} \Box K_1, s) = \begin{cases}
 3 & \text{if } s < 2^{2t+1} - 2 \\
 4 & \text{if } s \geq 2^{2t+1} - 2.
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell(K_n \Box K_1, s) = \begin{cases}
 n & \text{if } s < n! \\
 n + 1 & \text{if } s \geq n!.
\end{cases}
$$

Corollary (K. and Mudrock, 2018+)

$$
\chi_\ell((K_n \vee C_{2t+1}) \Box K_1, s) = \begin{cases}
 n + 3 & \text{if } s < \frac{1}{3}(n + 3)!(4^t - 1) \\
 n + 4 & \text{if } s \geq \frac{1}{3}(n + 3)!(4^t - 1).
\end{cases}
$$
Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$\chi_{\ell}(G \Box K_1, s) = \begin{cases}
k & \text{if } s < P_{\ell}(G, k) \\
k + 1 & \text{if } s \geq P_{\ell}(G, k). \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi_{\ell}(C_{2t+1} \Box K_1, s) = \begin{cases}
3 & \text{if } s < 2^{2t+1} - 2 \\
4 & \text{if } s \geq 2^{2t+1} - 2. \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi_{\ell}(K_n \Box K_1, s) = \begin{cases}
n & \text{if } s < n! \\
n + 1 & \text{if } s \geq n!. \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi_{\ell}((K_n \lor C_{2t+1}) \Box K_1, s) = \begin{cases}
n + 3 & \text{if } s < \frac{1}{3}(n + 3)!(4^t - 1) \\
n + 4 & \text{if } s \geq \frac{1}{3}(n + 3)!(4^t - 1). \end{cases}$$
Corollaries to Second Result

Corollary (K. and Mudrock, 2018+)

Let G be a strong k-chromatic choosable graph. Then,

$$\chi\ell(G \Box K_{1,s}) = \begin{cases} k & \text{if } s < P\ell(G, k) \\ k + 1 & \text{if } s \geq P\ell(G, k). \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi\ell(C_{2t+1} \Box K_{1,s}) = \begin{cases} 3 & \text{if } s < 2^{2t+1} - 2 \\ 4 & \text{if } s \geq 2^{2t+1} - 2. \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi\ell(K_n \Box K_{1,s}) = \begin{cases} n & \text{if } s < n! \\ n + 1 & \text{if } s \geq n!. \end{cases}$$

Corollary (K. and Mudrock, 2018+)

$$\chi\ell((K_n \lor C_{2t+1}) \Box K_{1,s}) = \begin{cases} n + 3 & \text{if } s < \frac{1}{3}(n + 3)!(4^t - 1) \\ n + 4 & \text{if } s \geq \frac{1}{3}(n + 3)!(4^t - 1). \end{cases}$$
Extending the Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then
\[\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a \text{ if and only if } b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a. \]

Open Question: Can we remove the $k \geq a + 1$ in the above theorem?

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph, then
\[\chi_\ell(G \Box K_{a,b}) < \chi_\ell(G) + a \text{ whenever } b < (P_\ell(G, \chi_\ell(G) + a - 1))^a/2^{k-1}. \]
Extending the Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then $\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a$ if and only if $b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a$.

Open Question: Can we remove the $k \geq a + 1$ in the above theorem?

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph, then $\chi_\ell(G \square K_{a,b}) < \chi_\ell(G) + a$ whenever $b < (P_\ell(G, \chi_\ell(G) + a - 1))^a/2^{k-1}$.
Extending the Second Result

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph and $k \geq a + 1$, then
\[\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a \] if and only if
\[b \geq (P_\ell(G, \chi_\ell(G) + a - 1))^a. \]

Open Question: Can we remove the $k \geq a + 1$ in the above theorem?

Theorem (K. and Mudrock)

If G is a strong k-chromatic choosable graph, then
\[\chi_\ell(G \square K_{a,b}) < \chi_\ell(G) + a \] whenever
\[b < (P_\ell(G, \chi_\ell(G) + a - 1))^a/2^{k-1}. \]
Questions?

- Define $f_a(G)$ as the smallest b s.t. $\chi_\ell(G \square K_{a,b}) = \chi_\ell(G) + a$.
- For what graphs does $f_a(G) = (P_\ell(G, \chi_\ell(G) + a - 1))^a$?
- Does there exist a strongly chromatic-choosable graph M such that $f_a(M) < (P_\ell(M, \chi_\ell(M) + a - 1))^a$? Or, can we remove the condition $k \geq a + 1$ in the second theorem?
- Is it the case that $f_a(K_n) = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a$ for each n, a?
- We can ask the above question for any family of strongly chromatic-choosable graphs.

- Is it always the case that $P_\ell(G, k) = P(G, k)$ when G is strong chromatic choosable?
- (Thomassen 2009) Does there exist a graph G and a natural number $k > 2$ such that $P_\ell(G, k) = 1$?
- (Mohar 2001) Let G be a $(\Delta(G) + 1)$-edge-critical graph. Then prove that $L(G)$ is strong $(\Delta(G) + 1)$-chromatic choosable.
Define $f_a(G)$ as the smallest b s.t. $\chi_\ell(G \Box K_{a,b}) = \chi_\ell(G) + a$.

For what graphs does $f_a(G) = (P_\ell(G, \chi_\ell(G) + a - 1))^a$?

Does there exist a strongly chromatic-choosable graph M such that $f_a(M) < (P_\ell(M, \chi_\ell(M) + a - 1))^a$? Or, can we remove the condition $k \geq a + 1$ in the second theorem?

Is it the case that $f_a(K_n) = \left(\frac{(n+a-1)!}{(a-1)!}\right)^a$ for each n, a?

We can ask the above question for any family of strongly chromatic-choosable graphs.

Is it always the case that $P_\ell(G, k) = P(G, k)$ when G is strong chromatic choosable?

(Thomassen 2009) Does there exist a graph G and a natural number $k > 2$ such that $P_\ell(G, k) = 1$?

(Mohar 2001) Let G be a $(\Delta(G) + 1)$-edge-critical graph. Then prove that $L(G)$ is strong $(\Delta(G) + 1)$-chromatic choosable.