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The high dimensional integration is used for many applications: option pricing, ion transport models,
statistical physics ...
Some common techniques are:

Method Convergence
Trapezoidal rule: OpN´2{dq
Simpson’s rule: OpN´4{dq
Monte Carlo: OpN´1{2q

Quasi-Monte Carlo: OpN´1`εq
with d the dimension and N the number of points.
Many methods suffer from what is called Curse of dimensionality. When d is big, the convergence
becomes really slow. Nevertheless, among all the methods, Monte Carlo and Quasi-Monte Carlo
have a nice property: they do not depend on d.
Then, it looks fair to study the multidimensional numerical integration with Quasi-Monte Carlo:

ż

r0,1qd
fpxq dx « 1

n

n´1
ÿ

i“0
fptiq

for a fixed sequence t0, t1, . . . in the unit cube r0, 1qd.

Motivation

The Koksma-Hlawka inequaltiy
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ď D˚pn, tt iuqV pfq

This inequality could be an interesting start for bounding the error. However, V pfq -"roughness" of the

function- is hard to compute and in this inequality, the sequence and V pfq are unrelated a priori. This

is the reason why we develop a new approach for the problem.
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Consider the solution as I :“
ş

r0,1qd fpxqdx , our QMC algorithm as pIm :“ 1
bm

řbm´1
i“0 fptiq and pεm its

bound on the absolute error found in (1). Let also tolpa, bq be defined Lipschitz L “ 1 in b and
non-decreasing in both arguments, i.e. tolpa, bq ď tolpa1, b1q for a ď a1 and b ď b1. Ideally, we will
use tolpεa, εr |I|q.
Define

∆m,˘ :“ 1
2

”

tol
´

εa, εr
∣∣∣pIm ´ pεm

∣∣∣
¯

˘ tol
´

εa, εr
∣∣∣pIm ` pεm

∣∣∣
¯ı

,

rIm :“ pIm ` ∆m,´
Lemma 1 We claim that if pεm ď ∆m,`, then

∣∣∣I ´rIm
∣∣∣ ď tolpεa, εr |I|q

The new algorithm consists on increasing m until pεm ď ∆m,`.

Generalizing the Tolerance

An important remark is that ∆m,´ is always shrinking pIm into rIm because

pIm ą 0 ðñ ∆m,´ ă 0.

This means that rIm is biased, always closer to 0 than pIm. This is helpful for
the relative error because given pIm, if I is above pIm, then

∣∣∣∣
I´pIm
I

∣∣∣∣ can be smaller.

Therefore, in order to minimize
∣∣∣∣
I´pIm
I

∣∣∣∣, we enlarge I with respect to pIm by shrinking
pIm. We then build the biased estimator rIm as desired. Thus, for the new algorithm
it will be easier to satisfy the condition εr ě

∣∣∣∣
I´rIm
I
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To talk about the upper bound on the complexity, we need the following Lemma,
Lemma 2 If

pεm ď
tolpεa, εr |I|q

1` εr
then,

pεm ď ∆m,`
Now, let’s define Mpε, Sq such that, m ě Mpε, Sq ñ pεm ď ε. Here, S represents the set of functions
belonging to C and the integer M only depends on S and ε. In our guaranteed algorithm, we find
the minimum m for which pεm ď ε, given a particular function.
Consider M˚ “ M

´

tolpεa,εr|I|q
1`εr , S

¯

. Then, M˚ is an upper bound on the computational complexity
since,

m ě M˚ Mdefùñ pεm ď
tol pεa, εr |I|q

1` εr
lem(2)
ùñ pεm ď ∆m,`
lem(1)
ùñ

∣∣∣I ´rIm
∣∣∣ ď tolpεa, εr |I|q

From it, we can obtain a bound on the computational cost for our guaranteed QMC algorithm,

cost ď cM˚bM
˚

` $pfqbM
˚

Upper Bound on the Computational Complexity

Once the mapping that gives us the ordering of the wavenumbers is fixed, we can build our algorithm
as follows. First we define the cone C of functions:

There exist non-increasing pω and qω such that for all `˚ ď ` ď m

pSp`,mq :“
b`´1
ÿ

κ“tb`´1u

8
ÿ

λ“1

∣∣f̂κ`λbm
∣∣, qSpmq :“

8
ÿ

κ“bm

∣∣f̂κ
∣∣ Sp`q :“

b`´1
ÿ

κ“tb`´1u

∣∣f̂κ
∣∣

pSp`,mq ď pωpm´ `qqSpmq, qSpmq ď qωpm´ `qSp`q.

Cone assumption

This cone is characterized for having the property that if f P C ùñ af P C for all a P R. Below there
is an example for a 2 dimensional function. On the left we have the surface plot of it and on the
right, the interpretation of what some specific sums would correspond to:
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err ≤ Ŝ(0, 12)
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Fig. 1: Example for the function fpx, yq “
sin

´

20
?
px´0.5q2`py´0.5q2

¯

20
?
px´0.5q2`py´0.5q2

´ 4px ´ 0.5qpy´ 0.75q.

In addition, for all the functions lying in C, we can show that our error is bounded by sums of our
approximated coefficients rSp`,mq :“

řb`´1
κ“tb`´1u

∣∣f̃m,κ
∣∣,

∣∣∣∣∣∣

ż

r0,1qd
fpxq dx ´ 1

bm
bm´1
ÿ

i“0
fptiq

∣∣∣∣∣∣
ď

pωpmqqωpm´ `q
1´ pωpm´ `qqωpm´ `q

rSp`,mq (1)

Guaranteed QMC Algorithm: Cones of Functions

Guaranteed Automatic Adaptive algorithmGiven an error tolerance ε ą 0 and an integrand f satisfying the coneconditions on its coefficients, fix r P N and let Cpmq “ pωpmqqωprq
1´pωprqqωprq. Ini-tialize m “ r P N and do,

Step 1. Compute the sum of the approximated coefficients rSpm´ r,mq.Step 2. If the error tolerance is satisfied, i.e.

CpmqrSpm´ r,mq ď ε,
then return the answer.

Step 3. Otherwise, increase m by one, and return to Step 1.
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