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Abstract
For an arbitrary simple graph G and a positive integer r, the super

line multigraph of index r of G, denoted Mr(G), has for vertices all
the r-subsets of edges. Two vertices S and T are joined by as many
edges as pairs of distinct edges s ∈ S and t ∈ T share a common vertex
in G. We present spectral properties ofMr(G) and particularly, if G
is a regular graph, we calculate all the eigenvalues ofMr(G) and their
multiplicities in terms of those of G.
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1 Introduction

Bagga, Beineke, and Varma introduced the concept of super line graph in [3].
Given a simple graph (i.e. without loops or multiple edges) G = (V,E), let
p = |V | be the number of vertices and q = |E| be the number of edges. For a
given positive integer r ≤ q, the super line graph of index r of G is the graph
Lr(G) which has for vertices all of the r-subsets of E, and two vertices S
and T are adjacent whenever there exist distinct s ∈ S and t ∈ T such that
s and t share a common vertex. Super line graphs are a generalization of
line graphs. Indeed, from the definition it follows that L1(G) coincides with
the line graph L(G). Properties of super line graphs were presented in [2, 4],
and a good and concise summary can be found in [15]. A recent survey on
several generalizations of line graphs can be found in [1]. More specifically,
some results regarding the super line graph of index 2 were presented in [6]
and [2].

This paper deals with super line multigraphs, a variation of the super
line graph that was first defined and studied in [2]. Intuitively, the super line
multigraph of a simple graph has the same set of vertices as the super line
graph, but the number of edges between any two vertices S and T is given by
the number of pairs s ∈ S and t ∈ T such that s and t are distinct and share
a common vertex. Formally, for a given graph G = (V,E) and a positive
integer r ≤ q, the super line multigraph of index r of G is the multigraph
Mr(G) whose vertices are the r-subsets of E(G), and two vertices S and T
are joined by as many edges as ordered pairs of edges (s, t) ∈ S×T such that
s and t are distinct and share a common vertex in G. Let n =

(
q
r

)
be the

number of vertices of Mr(G) and let m be the number of edges of Mr(G).
In this paper, the underlying graph G is simple.

A simple graph G on p vertices labeled as v1, . . . , vp can be associated
with an adjacency matrix A = A(G), which is the p× p matrix whose entries
ai,j are given by ai,j = 1 if there is an edge joining vi and vj in G and
ai,j = 0 otherwise. If G has q edges labeled as e1, . . . , eq, the incidence
matrix B = B(G) is the p× q matrix whose entries bi,j are given by bi,j = 1
if ej is incident to vi, and 0 otherwise. Analogously, the entry ai,j of the
adjacency matrix of a multigraph is the number of edges between vi and vj
when i 6= j, and is the number of loops at vi when i = j. The characteristic
polynomial of the graph G, denoted by χ(G;λ), is defined as det(A−λI). The
eigenvalues of the graph G are those of A. The algebraic multiplicity of an
eigenvalue α is the multiplicity of α as a root of the characteristic polynomial
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of A and is denoted by ma(α,A) or ma(α,G). The geometric multiplicity of
an eigenvalue α is the dimension of ker(A− αI) and is denoted by mg(α,A)
or mg(α,G). If A is a real symmetric matrix, every eigenvalue α satisfies
ma(α,A) = mg(α,A). The spectrum of G is the set of eigenvalues of G
together with their multiplicities as eigenvalues of A. The spectrum of a
graph provides valuable information on its structure. More information on
this topic can be found in [7, 9, 14].

The authors first investigated the spectra of super line multigraphs in
[5]. In this paper we continue that study and give several new results as
well extensions of some results in [5]. It is known that the eigenvalues of a
line graph are greater than or equal to −2 (see [10] for properties of graphs
with least eigenvalue −2). In this paper we generalize that result by giving a
lower bound for the eigenvalues of any super line multigraph. Moreover, we
characterize the graphs whose super line multigraph has the lower bound as
an eigenvalue. This is done through the study of the relationships between
the adjacency matrix and characteristic polynomial of a graph and the ad-
jacency matrix and characteristic polynomial of its super line multigraph.
Furthermore, those relationships allow us to give a complete description of
the spectrum of the super line multigraph of a regular graph in terms of the
spectrum of the original graph.

We refer the reader to [8, 12] for background on terminology or concepts
not included here.

2 General results

Given a super line multigraphMr(G) of index r ≤ q where n =
(
q
r

)
represents

its number of vertices, we denote by Uq,r the n× q binary matrix whose rows
are the binary strings of length q with exactly r entries equal to 1. Therefore,
if G is a graph with q edges e1, . . . , eq, the rows of the matrix Uq,r represent
all the possible r-subsets of edges, or the vertices of the super line multigraph
Mr(G). We assume that the rows of Uq,r are ordered “lexicographically” in
the order of the edges e1, . . . , eq. Thus, the first row (with ones in the first r
entries) corresponds to the vertex {e1, . . . , er} in Mr(G), while the last row
(with ones in the last r entries) corresponds to the vertex {eq−r+1, . . . , eq}.
Whenever the parameters q and r are apparent from context, we will use U
in place of Uq,r. Henceforth, for any matrix X, let (X)ij denote the entry
in row i and column j of X, and let X t denote the transpose of X. Before
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considering the spectrum ofMr(G), we first obtain a formula for the number
of its edges.

Lemma 2.1 Let 1 ≤ r < q. If G is a simple graph with q edges and p vertices
whose degrees are given by the sequence (d1, . . . , dp), then the numbers of non-
loop edges and loop edges, respectively, of Mr(G) are[(

q − 1

r − 1

)2

−
(
q − 2

r − 2

)] p∑
i=1

(
di
2

)
, and 2

(
q − 2

r − 2

) p∑
i=1

(
di
2

)
.

Proof: The proof is a straightforward extension of the proof for the case r = 2
of [2, Theorem 4.1]. Given a vertex v of degree d, consider a pair of edges
e, f ∈ {e1 . . . , eq} in G that are incident at v. By renumbering if necessary,
assume e = e1 and f = e2.

We count the number of non-loop edges ofMr(G) that arise due to the
co-incidence of e1, e2 at v. These edges will have distinct end-points of the
form S = {e1, f2, f3, . . . , fr} and T = {e2, f ′2, . . . , f ′r}, When {e1, e2} 6⊆ S∩T ,
we may view S and T as being ordered, distinguished by e1 ∈ S and e2 ∈ T .
When {e1, e2} ⊆ S ∩ T , the incidence of e1 and e2 gives rise to two edges of
the form {S, T}: one from e1 ∈ S and e2 ∈ T , and the other from e2 ∈ S
and e1 ∈ T . The total number of non-loop edges arising from the incidence
of e1 and e2 is therefore obtained by selecting {f2, . . . , fr} ⊆ E(G)\{e1} and
{f ′2, . . . , f ′r} ⊆ E(G) \ {e2}, ignoring only the case S = T , and is therefore(

q − 1

r − 1

)2

−
(
q − 2

r − 2

)
.

This quantity multiplies by the
(
d
2

)
pairs of edges {e, f} incident at v.

The loop edges arising from the co-incidence of e1 and e2 are of the form
{{e1, e2, f3, . . . , fr}, {e1, e2, f3, . . . , fr}}, where f3, . . . , fr are distinct edges in
E(G) \ {e1, e2}. There are

(
q−2
r−2

)
ways to select f3, . . . , fr, and by definition,

one instance of this form gives rise to two loops. The formula for loops fol-
lows since there are

(
d
2

)
pairs of edges e, f incident at v.

Lemma 2.1 also holds for r = q, when Mr(G) is a 1-vertex graph with
no non-loop edges. We will need the following lemma and its corollary. These
were first presented without proof in [5]. For the sake of completeness we
give the proofs here.
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Lemma 2.2 For a simple graph G, the adjacency matrix of the super line
multigraph Mr(G) is given by

A(Mr(G)) = UALU
t

where AL is the adjacency matrix of L(G).

Proof: As above, let the edges of G be e1, . . . , eq. Given two vertices i and j
inMr(G), we count the edges between i and j that arise due to an adjacency
of ek in j with edges of i, for 1 ≤ k ≤ q. Now the (i, j)th entry of UALU

t is

(UALU
t)ij =

q∑
k=1

(UAL)ik(U
t)kj =

q∑
k=1

(UAL)ik(U)jk.

Moreover, (UAL)ik =
∑q

l=1(U)il(AL)lk counts the number of adjacen-
cies of vertex i that arise due to the adjacency of an edge in this vertex with
the edge ek. On the other hand, (U)jk = 1 iff the edge ek is contained in
vertex j. The result follows.
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Figure 1: A graph G, its line graph L(G) and super line graph M2(G).

Note that for a simple graph G, Mr(G) may have loops, and conse-
quently, A(Mr(G)) may have nonzero entries in the diagonal. The next
matrix computation illustrates how the Lemma 2.2 works in the example
presented in Figure 1. The edge labels of G, in alphabetical order, are the
indices of AL.
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AL =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 q = 4, r = 2;

U4,2ALU
t
4,2 =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1




0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0




1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ;

A(Mr(G)) = U4,2ALU
t
4,2 =


2 3 1 3 1 2
3 2 2 3 3 2
1 2 0 3 1 2
3 3 3 2 2 2
1 3 1 2 0 2
2 2 2 2 2 2

 .

Corollary 2.3 Under the same assumptions as in Lemma 2.2,

A(Mr(G)) = Uq,rB
tBU t

q,r − 2Uq,rU
t
q,r,

where B is the incidence matrix of G.

Proof: We observe that BtB = AL + 2I. The proof now follows from Lemma
2.2.

Observe that U t
q,1Uq,1 = I. Besides, if 2 ≤ r < q, it was shown in

[5] that the product U t
q,rUq,r still has a particular pattern. We will give an

expression for U t
q,rUq,r, for any r, 1 ≤ r < q, that will be very useful in

proving other results in this work. We need the following standard result
from linear algebra, which we will apply to the eigensystems of UU t and
U tU .

Lemma 2.4 Let M and N be two (real or complex) matrices of sizes m× n
and n×m, respectively. Then det(NM − xIn) = (−x)n−m det(MN − xIm).
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Lemma 2.5 For an integer q ≥ 2 and an integer r, 1 ≤ r < q, let b and c
be defined by

b =
(
q−2
r−2

)
and c =

(
q−1
r−1

)
, if r > 1

b = 0 and c = 1, if r = 1

Then
Uq,r

tUq,r = bJ + (c− b)I,
where J is the all-ones matrix. Furthermore, both Uq,r

tUq,r and Uq,rUq,r
t

have eigenvalue rc with multiplicity 1 corresponding to eigenvectors ~1n×1 and
~1q×1, respectively; and eigenvalue c − b with multiplicity q − 1; Uq,rU

t
q,r also

has eigenvalue 0 with multiplicity n− q.

Proof: U tU is a q × q matrix whose entries are

(U tU)ij =

(q
r)∑

k=1

(U t)ik(U)kj =

(q
r)∑

k=1

(U)ki(U)kj.

Therefore, for i = j, (U)ki and (U)kj coincide in exactly
(
q−1
r−1

)
positions, and

for i 6= j, those coincide in exactly
(
q−2
r−2

)
positions. Thus the entries of the

matrix U tU are all b =
(
q−2
r−2

)
, except in the diagonal where all are c =

(
q−1
r−1

)
.

For U tU , ~1 has eigenvalue rc, and all vectors orthogonal to ~1 have eigenvalue
c− b. Also for UU t, ~1 has eigenvalue rc, because for all 1 ≤ i ≤ q,

UU t~1(i) =
n∑
j=1

q∑
k=1

(U)ik(U)jk =

q∑
k=1

(U)ik

n∑
j=1

(U)jk.

This last sum is rc, because for each of r 1’s of row i of U , there are
(
q−1
r−1

)
total rows j of U with a 1 in the same column. From Lemma 2.4, the nonzero
portions of the spectra of U tU and UU t coincide.

Next we generalize the result [10, p. 5] that establishes that the eigen-
values of a line graph are greater than or equal to −2, and characterize the
cases where the lower bound is attained in terms of a specific eigenvector.

Theorem 2.6 Let G be a simple graph with q edges and incidence matrix
B = B(G), let r be an integer, where 1 ≤ r < q, and set U = Uq,r. If λ is an
eigenvalue of Mr(G), then

λ ≥ −2

(
q − 2

r − 1

)
.
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Furthermore, the lower bound is achieved iff there exists a nonzero vector
φ ∈ Rn, where n =

(
q
r

)
, such that

(i)
∑n

i=1 φ(i) = 0,

(ii) BU tφ = ~0, and
(iii) UU tφ =

(
q−2
r−1

)
φ.

Proof: The spectrum of UU t is given by Lemma 2.5. Let {(µi, ψi) : 1 ≤ i ≤
n} be an orthonormal eigensystem for UU t with eigenvalues µ1 = r

(
q−1
r−1

)
,

µ2 = · · · = µq =
(
q−2
r−1

)
, and µq+1 = · · · = µn = 0, so that ψ1 = ~1/‖~1‖ =

n−1/2~1. Note that A(Mr(G)) is real symmetric and thus Hermitian. If λ is
the smallest eigenvalue of A(Mr(G)), then by the Rayleigh-Ritz Theorem
([13, p. 176]), we have λ = minφ∈Rn,‖φ‖=1〈φ,A(Mr(G))φ〉. Since {φ ∈ Rn :
‖φ‖ = 1} is compact, let φ0 be a vector achieving the minimum. Write
φ0 =

∑n
i=1 αiψi, so that

λ =

〈
n∑
i=1

αiψi, A(Mr(G))
n∑
i=1

αiψi

〉
=

〈
α1n

−1/2~1, A(Mr(G))α1n
−1/2~1

〉
+

〈
n∑
i=2

αiψi, A(Mr(G))
n∑
i=2

αiψi

〉
. (1)

Since α2
1 ≥ 0 and A(Mr(G)) is a nonnegative matrix, the first term of

(1) is zero, when φ0 ⊥ ~1 or A(Mr(G)) = 0, and otherwise positive. If∑n
i=2 αiψi = ~0, the second term of (1) is zero and the lower bound follows.

Otherwise, using Corollary 2.3 and the fact that UU tψi = µiψi, the second
term is

〈
n∑
i=2

αiψi, UB
tBU t

n∑
i=2

αiψi

〉
− 2

〈
n∑
i=2

αiψi, UU
t

n∑
i=2

αiψi

〉
(2)

=

∥∥∥∥∥BU t

n∑
i=2

αiψi

∥∥∥∥∥
2

− 2

(
q − 2

r − 1

) q∑
i=2

α2
i (3)

The lower bound follows since the first term of (2) is nonnegative, and the
condition ‖φ0‖ = 1 implies that

∑q
i=2 α

2
i ≤ 1.
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The lower bound is achieved if and only if ‖BU t
∑n

i=2 αiψi‖2 = 0 and∑q
i=2 α

2
i = 1. Since

∑q
i=2 α

2
i = 1 iff α1 = αq+1 = · · ·αn = 0, the lower

bound is achieved iff φ0 =
∑q

i=2 αiψi and BU tφ0 = 0, which is equivalent to
conditions (i)-(iii).

By using the following result from [11] concerning the kernel of B we
can characterize when Mr(G) achieves the lower bound in the theorem in
terms of the structure of G.

Proposition 2.7 Let G be a simple graph. There exists a nonzero vector
θ ∈ Rq such that

∑q
i=1 θ(i) = 0 and Bθ = ~0 iff G contains an even cycle or

two edge-disjoint odd cycles in the same connected component.

Corollary 2.8 The super line multigraph Mr(G) of a simple graph G
achieves the eigenvalue lower bound in Theorem 2.6 iff G contains an even
cycle or two edge-disjoint odd cycles in the same connected component.

Proof: Suppose that φ ∈ Rn is a nonzero vector that achieves the lower
bound and thus satisfies conditions (i)-(iii) of Theorem 2.6. Set θ = U tφ.
Then from (iii) we have θ 6= ~0; from (i),

∑q
i=1 θ(i) =

∑q
i=1

∑n
j=1(U

t)ijφ(j) =∑n
j=1 φ(j)

∑q
i=1(U)ji =

∑n
j=1 φ(j)r = 0; and, from (ii), Bθ = ~0. Thus the

forward direction follows from Proposition 2.7.
For the converse, by Proposition 2.7 suppose there exists a nonzero θ ∈

Rq such that
∑q

i=1 θ(i) = 0 and Bθ = ~0. Using the same orthonormal eigen-
system for UU t as in the proof of Theorem 2.6, let U = {U tψ1, . . . , U

tψn}, so
that U spans Rq, as the eigenvalues µ1, . . . , µq are nonzero by Lemma 2.5. U
is an orthogonal basis for Rq since 〈U tψi, U

tψj〉 = 〈UU tψi, ψj〉 = µi〈ψi, ψj〉
for 1 ≤ i, j ≤ q. Now write θ =

∑q
i=1 βiU

tψi and note that β1 = 0 because

〈U tψ1, θ〉 = n−1/2
(
q−1
r−1

)
〈~1, θ〉 = 0. Set φ =

∑q
i=2 βiψi so that φ satisfies con-

ditions (i)-(iii).

The following result, which originally appeared in [5], is a direct conse-
quence of Lemma 2.4. We will need this in the next section.

Corollary 2.9 For a simple graph G, and with notation as above,
χ(UALU

t;λ) = (−λ)n−qχ(U tUAL;λ). .

Note that if one follows the definition of characteristic polynomial given
in [7] the above proposition becomes χ(UAU t;λ) = λn−qχ(U tUAL;λ).
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3 Regular graphs

In this section we consider a d-regular graph G with q edges, which has a
2(d− 1)-regular line graph L(G). Let AL be the adjacency matrix of L(G),
and let α1 = 2(d−1), α2, . . . , αq be the eigenvalues of AL with corresponding
eigenvectors φ1 = ~1, φ2, . . . , φq, respectively. (Notice that ~1 is an eigenvector
because G, and therefore L(G), are regular graphs.) Proposition 3.1 and The-
orem 3.2 originally appeared in [5], but are included here for completeness,
with simplified proof and determination of sign in Theorem 3.2.

Proposition 3.1 Let G be a simple d-regular graph with q edges, and let AL
be the adjacency matrix of L(G). Suppose that r is an integer, with 1 ≤ r < q,
and define b and c as in Lemma 2.5. Let α1, . . . , αq be the eigenvalues of
AL corresponding to eigenvectors φ1 = ~1, φ2, . . . , φq, respectively. Then the
eigenvalues of U tUAL are λ1 = 2bq(d− 1) + 2(c− b)(d− 1) with eigenvector
φ1 = ~1; and, for i = 2, . . . , q, λi = (c− b)αi with eigenvector φi; and

χ(U tUAL;λ) =

q∏
i=1

(λi − λ).

Proof: From Lemma 2.5, U tU = bJ + (c − b)I. Therefore, since L(G) is
2(d − 1)-regular, U tUAL = 2b(d − 1)J + (c − b)AL. Furthermore, AL and
J have eigenvector ~1 simultaneously, and so all other eigenvectors of AL are
also eigenvectors, and are in the null space, of J .

Theorem 3.2 Let G be a simple d-regular graph with q edges, r an integer,
1 ≤ r < q, and AL the adjacency matrix of L(G). Let α1, . . . , αq be the
eigenvalues of AL, where α1 corresponds to the eigenvector ~1. Let n =

(
q
r

)
.

Then

χ(Mr(G);λ) = (−λ)n−q
q∏
i=1

(λi − λ),

where λ1 = 2bq(d−1) + 2(c− b)(d−1), and λi = (c− b)αi, for i = 2, . . . , q.

The previous theorem is a direct consequence of Corollary 2.9 and
Proposition 3.1. It gives the spectrum of the super line multigraph Mr(G)
for any r, 1 ≤ r < q, in terms of the spectrum of L(G) in the case that G is
d-regular.

Moreover, we shall give a formula for the spectrum of the super line
multigraph Mr(G) in terms of the spectrum of G for some graphs. This is
based on the following result by Sachs ([7, p. 19]).
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Theorem 3.3 (Sachs) Let G be a simple d-regular graph with p vertices and
q edges and let L(G) be the line graph of G. Then

χ(L(G);λ) = (−2− λ)q−pχ(G;λ+ 2− d).

In other words, if β 6= d is an eigenvalue of G, then d − 2 + β is
an eigenvalue of L(G). This observation yields the following corollary of
Theorem 3.2.

Corollary 3.4 Let G be a simple d-regular graph with p vertices and q edges.
Let the eigenvalues of the adjacency matrix of G be d = β1 ≥ · · · ≥ βp, where
β1 corresponds to the eigenvector ~1. Let r be an integer, 1 ≤ r < q, and let
n =

(
q
r

)
. Then

χ(Mr(G);λ) = (−λ)n−q
q∏
i=1

(λi − λ),

where λ1 = 2bq(d−1)+2(c−b)(d−1), λi = (c−b)(d−2+βi) for i = 2, . . . , p,
and λp+1 = · · · = λq = −2(c− b).

The authors wish to thank the referees for their helpful comments.
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