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Erdős-Rényi graphs

Robert B. Ellis a,1,∗, James P. Ferry b,1

aDepartment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL
60616

bMetron, Inc., 11911 Freedom Drive Suite 800 Reston, VA 20190-5602

Abstract

We develop formulas for the variance of the number of copies of a small subgraph H
in the Erdős-Rényi random graph. The central technique employs a graph overlay
polynomial encoding subgraph symmetries, which is of independent interest, that
counts the number of copies H̃ ∼= H overlapping H. In the sparse case, building on
previous results of Janson,  Luczak, and Rucinski allows restriction of the polynomial
to the asymptotically contributing portion either when H is connected with non-
null 2-core, or when H is a tree. In either case we give a compact computational
formula for the asymptotic variance in terms of a rooted tree overlay polynomial.
Two cases for which the formula is valid in a range for which both the expected
value and variance are finite are when H is a cycle with attached trees and when
H is a tree.
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1 Introduction

The Erdős-Rényi random graph G(n, p), developed in [1–3], is constructed
on the set [n] := {1, . . . , n} of vertices by selecting each potential edge to
be present independently with fixed probability p. An historically important
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question is the probability threshold function p(n) for the appearance of a
copy of a fixed small subgraph H. Deferring most definitions until Section 2,
we outline the central role the density of H plays as follows. Define the max-
imum density m(H) := {max(e(F )/v(F )) : F ⊆ H}, where F ranges over all
subgraphs of H and the density e(F )/v(F ) is the edge-to-vertex ratio of F .
H is balanced if m(H) = e(H)/v(H), and otherwise is unbalanced. A balanced
H is strictly balanced if e(F )/v(F ) = m(H) only for F = H. Erdős and Rényi
proved in [3] that p(n) = n−1/m(H) is the threshold for a copy of H appear-
ing when H is balanced, and Bollobás [4] extended this result to unbalanced
graphs. Also in [4], and independently by Karoński and Ruciński in [5], the
number of copies of H at the threshold was shown to have Poisson distribu-
tion when H is strictly balanced. Ruciński and Vince showed in [6] that this
in fact is characterizing for strictly balanced H. In [7], Bollobás and Wierman
give a subgraph decomposition method for computing the distribution at the
threshold for any balanced H, but not a compact formula. We refer the reader
to [7–9] for details.

In this paper we take a different approach, calculating the variance of the
number of copies of H in G(n, p). Section 2 presents the necessary definitions
and notation, and quotes a formulation of the normalized variance in terms
of overlapping copies H̃ of H. In Section 3, we introduce a graph overlay
polynomial M(H;x, y), which is of independent interest, and use it to exactly
express the normalized variance in terms of the internal subgraph symmetries
of H. This result adapts to arbitrary symmetric random graph processes. A re-
striction of M(H;x, y) yields the asymptotic variance when p(n) is sufficiently
small. Sections 3.1 and 3.2 give compact computational formulas in the cases
that H is connected with non-null 2-core, and is a tree, respectively. Along
the way we introduce a rooted tree overlay polynomial B(T, T ′;x) analogous
to M(H;x, y). As a result, we have new compact formulas for the asymptotic
variance of the subgraph count at the threshold for a copy of H appearing
including two important cases: when H consists of a strictly balanced 2-core
(or a sufficiently densely structured core) with trees attached arbitrarily, and
when H is a tree. We conclude with several remarks in Section 4.

Studying the variance of the number XH of copies of H in G(n, p) is mo-
tivated by the following problem of detecting whether H has been inserted
into an instance of G(n, p) by an adversary. Define GH(n, p) to be the ran-
dom graph obtained by pre-inserting a fixed copy of H, and then selecting
all remaining edges each independently with probability p. An evidence graph
G is presented, but it is unknown whether G was generated from G(n, p) or
GH(n, p). The optimal decision statistic from which to choose the most likely
generator is the likelihood ratio ΛH(G), which is the ratio of the probability of
obtaining G from GH(n, p) to the probability of obtaining G from G(n, p). By
Theorem 3 of [10], ΛH(G) = XH(G)/E(X(G(n, p))), the ratio of the number
of copies of H in G to the expected number of copies of H in G(n, p). Precise
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tuning of a decision threshold for the statistic ΛH(G) requires full knowledge
of the two distributions for ΛH(G) under the assumption that the generator
is G(n, p) or GH(n, p), respectively. A start in the direction of this difficult
question is obtaining the variance of XH(G(n, p)), from which the expected
value of XH(GH(n, p)) is easily obtained. We refer the reader to [10,11] for
details of this detection problem.

2 Definitions and preliminaries

We refer the reader to [9] for a full treatment of the Erdős-Rényi random
graph model. Given a nonnegative integer n, a (simple, loopless) graph G =
(V (G), E(G)) has vertex set V (G) = [n] := {1, . . . , n}, and edge set E(G) ⊆(

[n]
2

)
:= {{i, j} : i, j ∈ [n], i 6= j}. The complete graph Kn on [n] has edge

set
(

[n]
2

)
. An edge e = {i, j} ∈ E(G) has endpoints i, j ∈ V (G); we also

write i ∼ j for vertex adjacency via edge e. When V (G) 6= ∅, G is non-
null. The degree d(i) of a vertex i ∈ V (G) is the number of edges for which

i is an endpoint. We define v(G) = n and e(G), 0 ≤ e(G) ≤
(
n
2

)
, to be

the number of vertices and edges, respectfully, of G. If V1, V2 ⊆ V (G) are
disjoint, we define E(V1, V2) := {{i, j} ∈ E(G) : i ∈ V1, j ∈ V2}, with size
e(V1, V2) = |E(V1, V2)|, to be the edges of G having one endpoint in each of
V1, V2. A graph H is a subgraph of G, denoted H ⊆ G, provided V (H) ⊆ V (G)
and E(H) ⊆ E(G). For U ⊆ V (G), G[U ] is the subgraph of G induced by U ,
with vertices V (G[U ]) = U and edges E(G[U ]) = {{i, j} ∈ E(G) : i, j ∈ U}.
The graph complement H \ H1 is H[V (H) \ V (H1)]. The intersection graph
H∩H1 of two subgraphs H,H1 ⊆ G has vertex set V (H)∩V (H1) and edge set
E(H)∩E(H1). A subgraph H̃ ⊆ Kn is a copy of H provided H̃ is isomorphic
to H; that is, there exists a bijective vertex mapping f : V (H)→ V (H̃) such
that {i, j} ∈ E(H) if and only if {f(i), f(j)} ∈ E(H̃). Define Iso(H, H̃) to be
the set of all such bijections. If H = H̃, the isomorphism is an automorphism,
and we define Aut(H) := Iso(H,H).

2.1 The subgraph count and a formula for variance

Given a real number p, 0 ≤ p ≤ 1, the Erdős-Rényi random graph G(n, p) on

n vertices is obtained by independently selecting each of
(
n
2

)
possible edges to

be present with probability p and absent with probability 1− p. We may view
G(n, p) as a probability space assigning to each graph G with n vertices prob-

ability pe(G)(1− p)(
n
2)−e(G). By the notation G ∼ G(n, p), or “G is distributed

as G(n, p)”, we mean that G is a random variable selected according to the
probability space. G(n, p) is an example of a symmetric random graph process;
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that is, one in which isomorphic graphs H, H̃ have equal probability of being
subgraphs of G(n, p). Let XH be the number of copies of H in G(n, p), which
is known to have expected value

E(XH) =

(
n

v(H)

)
v(H)!

|Aut(H)|
pe(H).

The variance of XH is Var(XH) = E(X2
H) − E(XH)2, and we define the nor-

malized variance

ν(XH) :=
Var(XH)

E(XH)
.

We will use the following form of ν(XH) due to [12]. For completeness, we
include the proof.

Lemma 2.1 Let H be a fixed graph with vertex set V (H) ⊆ [n]. Let G ∼
G(n, p). Then

ν[XH ] =
∑
H̃∼=H

(
P(H̃ ⊆ G|H ⊆ G)− P(H̃ ⊆ G)

)
, (1)

=
e(H)−1∑
`=0

∑
H̃∼=H

|E(H̃)\E(H)|=`

p`(1− p)
e(H)−`−1∑

i=0

pi, (2)

where additionally (1) holds for G produced from any symmetric random graph
process.

PROOF. Beginning with the definition of ν[XH ] = Var[XH ]/E[XH ] and as-
suming E[XH ] 6= 0, we have

ν[XH ] = E[XH |H ⊆ G]− E[XH ] iff

E[X2
H ] = E[XH |H ⊆ G]E[XH ] iff∑

H1,H2
∼=H
P(H1 ∪H2 ⊆ G) =

∑
H1
∼=H

P(H1 ⊆ G|H ⊆ G)
∑
H2
∼=H

P(H2 ⊆ G). (3)

The left-hand side of (3) becomes∑
H1,H2

∼=H
P((H1 ⊆ G) ∩ (H2 ⊆ G)) =

∑
H2
∼=H

∑
H1
∼=H

P(H1 ⊆ G|H2 ⊆ G)P(H2 ⊆ G).

(4)

In a symmetric random graph process such as G(n, p), isomorphic subgraphs
have the same probability. Let φ : [n]→ [n] be a bijection such that φ(H2) =
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H. Then P(H1 ⊆ G|H2 ⊆ G) = P(φ(H1) ⊆ G|H ⊆ G). Since both H1 and
φ(H1) range over all copies of H, we may substitute P(H1 ⊆ G|H ⊆ G)
into the right-hand side of (4), and factor out the sum over H2 to obtain the
right-hand side of (3). Rewriting

∑
H2
∼=H P(H2 ⊆ G) as E[XH ], dividing by

E[HH ], and subtracting E[XH ] yields (1). The right-hand side of (1) is equal

to
∑
H̃∼=H p

|E(H̃)\E(H)|− pe(H̃), which when refined according to |E(H̃) \E(H)|
and appropriately factored, becomes (2). �

2.2 The subgraph plot and leading terms of the variance

As in Lemma 3.5 of [9], the subgraph count variance can be refined according
to H1 = H̃ ∩H instead of |E(H̃) \ E(H)|. We quote the result here.

Lemma 2.2 (Janson,  Luczak, Ruciński) Let H be a fixed graph, and let
G ∼ G(n, p). Then the variance of the subgraph count of H in G is

Var(XH) = Θ

(1− p)
∑

H1⊆H,e(H1)>0

n2v(H)−v(H1)p2e(H)−e(H1)

 (5)

= Θ

(
(1− p) max

H1⊆H,e(H1)>0

E(XH)2

E(XH1)

)
,

where Θ(·) indicates asymptotic order of magnitude as n→∞.

Lemma 2.2 can be obtained from Lemma 2.1 by the mentioned regrouping of
terms and by multiplying by E(XH) to remove the normalization.

A convenient framework for identifying the dominating terms of (2) (and (5))
is through the subgraph plot of H. The subgraph plot of a graph H is the set
of points

Σ(H) := {(v(H1), e(H1)) : H1 ⊆ H, v(H1) ≥ 2},
which may be visualized in the Cartesian first quadrant {(v, e) : v, e ≥ 0}. We
now quote the properties of Σ(H) necessary for this paper, and refer the reader
to [9] for details. The roof of Σ(H), denoted by Σ̂(H), is the upper boundary of
the convex hull of Σ(H). We say H1 ⊆ H lies on the roof if (v(H1), e(H1)) ∈
Σ̂(H); H1 thus has maximum density e(H1)/v(H1) over all subgraphs of H
with v(H1) vertices. IfH1 lies on the roof, we define a+

H1
to be the (nonnegative)

slope of the line segment on the convex hull of Σ(H) whose left endpoint is
(v(H1), e(H1)) and whose right endpoint is (v(H2), e(H2)) ∈ Σ̂(H) for the
next largest possible value of v(H2). Similarly, a−H1

is the (nonnegative) slope
of the line segment whose right endpoint is (v(H1), e(H1)) and whose left
endpoint is (v(H2), e(H2)) ∈ Σ̂(H) for the next smallest possible value of
v(H2). These slopes weakly decrease from the left to the right of Σ̂(H). For
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convenience, define a+
H := 0 and a−K2

:=∞, where K2 represents any subgraph
of H with 2 vertices and 1 edge. Critically for this paper, H1 ⊆ H is a leading
term, or contributes asymptotically to (5), provided p = p(n) simultaneously

satisfies np
a+
H1 = Ω(1) and np

a−H1 = O(1). Here, Ω(·) and O(·) mean asymptotic
maximum and minimum order of magnitude, respectively.

2.3 The 2-core and leading terms of the subgraph count variance

The k-core of a graph H, defined in [13] and denoted by C(k;H), is the largest
subgraph of H with minimum degree at least k. The k-core is unique and
equals the graph obtained from H by iterative removal of vertices of degree
less than k along with their incident edges. From now on we consider only the
2-core of H, and refer to it as C(H) := C(2;H).

Assume first that C(H) is non-null (and thus v(C(H)) ≥ 3). In this case define
Σ̂R(H) to be the rightmost v(H)− v(C(H)) + 1 points on the roof Σ̂(H), so
that

Σ̂R(H) = {(v(C(H)) + k, e(C(H)) + k) : 0 ≤ k ≤ v(H)− v(C(H))}. (6)

This is because the edges E(H) \ E(C(H)) form a forest, and any subgraph
H1 ⊆ H with v(H1) ≥ v(C(H)) and maximum density must contain C(H).
The result of any breadth-first-search on H with initial graph C(H) gives
a sequence of subgraphs achieving (6). Second, if H is a tree, any maximum
density subgraph of H is a subtree; in this case define Σ̂R(H) := {(2+k, 1+k) :
0 ≤ k ≤ v(H) − 2}. This yields the following characterization of Σ̂R(H) in
terms of copies H̃ of H, by considering H̃ ∩ H to be a partial breadth first
search, and filling out H̃ outside of H.

Lemma 2.3 If H ⊆ Kn has non-null 2-core C(H) or is a tree with n ≥
2v(H)−max(v(C(H)), 2), then

Σ̂R(H) =
{

(v(H̃ ∩H), e(H̃ ∩H)) : H̃ ⊆ Kn, H ∼= H, |E(H̃) \ E(H)| =

|V (H̃) \ V (H)| ∈ {0, . . . , v(H)−max(v(C(H)), 2)}
}
,

where max(v(C(H)), 2) = 2 iff H is a tree. �

Clearly, for H1 ⊆ H and (v(H1), e(H1)) a middle point of Σ̂R(H), a+
H1

= a−H1
=

1. Moreover, when C(H) is non-null, a+
C(H) = a−H = 1; by definition of Σ̂(H),

C(H) lies on Σ̂(H), and
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a−C(H) := min
H1⊆H,

2≤v(H1)<v(C(H))

e(C(H))− e(H1)

v(C(H))− v(H1)
. (7)

From the following result, we have a−C(H) > 1 when H is connected with
non-null 2-core, and therefore asymptotic separation in the contribution to
ν(XH) from Σ̂(H) in Lemma 2.1 between when C(H) ⊆ H̃ ∩ H and when
C(H) 6⊆ H̃ ∩H.

Lemma 2.4 Let H be a graph. If the 2-core C(H) of H is non-null, then
a−C(H) ≥ 1, with equality iff C(H) has at least two connected components, the

least dense of which is a cycle. If H is a tree, then Σ̂R(H) = Σ̂(H).

PROOF. If H is a tree, the result is immediate from Lemma 2.3, so assume
C(H) is non-null. Let H1 achieve (7). We may assume H1 = H[V (H1)], since
adding only edges to H1 would reduce a−C(H). Without loss of generality, replace
H1 with C(H1), since doing so preserves the order relation (<,>,=) of 1 and
a−C(H). This lets us assume C(H1) ⊆ C(H). Assume to the contrary that

a−C(H) < 1. Then V (H) \ V (H1) > E(H) \E(H1), forcing a vertex v ∈ V (H) \
V (H1) with degree 1 in C(H), and contradicting the definition of 2-core. If
a−C(H) = 1, then V (H) \ V (H1) = E(H) \E(H1), and the only way to avoid a
degree 1 vertex in C(H) is if all edges in E(H)\E(H1) are between the vertices
of V (H)\V (H1), giving them average degree 2 in C(H). The only possibility is
for C(H)\C(H1) to be a union of one or more connected components of C(H)
which are cycles. Finally, suppose C(H) contains at least two components, one
of which is a cycle. Let H1 be the union of the other components to show that
a−C(H) ≤ 1. �

Consequently, when np
a−
C(H) = ω(1) and H is connected with non-null 2-core,

ν(XH) is asymptotically equal to the contribution to (2) when H̃ ∩H lies on
the right side of the roof, Σ̂R(H). Here, ω(1) means asymptotically strictly
greater than any constant function.

3 Exact enumeration of dominating variance terms in the sparse
case

In this section we formulate ν(XH) in (2) by counting, in terms of subgraph
symmetries, the set

Jk,`(H,n) := {H̃ ⊆ Kn : H̃ ∼= H, |V (H̃) \ V (H)| = k, |E(H̃) \ E(H)| = `} ,
(8)
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for H ⊆ Kn and appropriate k, `. First we define a generating polynomial
M(H;x, y) whose coefficients are invariants of H which count symmetries of
subgraphs H1 of H. Theorem 3.2 counts |Jk,`(H,n)| in terms of the corre-
sponding coefficient of M(H;x, y), yielding the formula for ν(XH) in Cor. 3.3,
along with an asymptotic form for the sparse case. We give a computational
formula in the sparse case for the main terms of M(H;x, y) in Section 3.1
when H is connected with non-null 2-core, and describe how to adjust it when
H is a tree in Section 3.2.

Definition 3.1 Let H be a graph. Define for 0 ≤ k ≤ v(H)and 0 ≤ ` ≤ e(H)
the subgraph collection

Hk,`(H) := {H1 ⊆ H : |V (H) \ V (H1)| = k, |E(H) \ E(H1)| = `};

and for fixed k, ` and H1, H2 ∈ Hk,`(H) the set of restricted isomorphisms

IsoH(H1, H2) := {ρ ∈Iso(H1, H2) : ∀i, j ∈ V (H1), {i, j} ∈ E(H) \ E(H1)⇒
{ρ(i), ρ(j)} 6∈ E(H) \ E(H2)}; (9)

and the coefficients

mk,`(H) :=
∑

H1,H2∈Hk,`(H)

|IsoH(H1, H2)|
|Aut(H)|

(10)

for the graph overlay polynomial

M(H;x, y) :=
v(H)∑
k=0

e(H)∑
`=0

mk,`(H)xky`. (11)

Hk,`(H) is the collection of all (v(H)−k)-vertex and (e(H)−`)-edge subgraphs

of H. The set IsoH(H1, H2) encodes the ways in which an isomorphic copy H̃ of
H can intersect H in H1, with H2 being the image of H1 under an isomorphism
from H̃ to H. The guide for construction of H̃ is H2 pulled back under ρ to
obtain H1, which is then extended outside of H to obtain H̃. Interpreting
H1 as H̃ ∩ H, if {ρ(i), ρ(j)} ∈ E(H) \ E(H2), then {i, j} must not be in
E(H) \ E(H1), since otherwise {i, j} is in both H̃ and H, and thus in H1.
In essence, not every H1 can be extended to an isomorphic copy of H by
using only vertices and edges outside of H. The coefficient mk,`(H) counts

|Jk,`(H,n)| as follows, where (n− v(H))k equals
(
n−v(H)

k

)
k!.

Theorem 3.2 Let H ⊆ Kn be a graph such that 0 ≤ k ≤ v(H), 0 ≤ ` ≤ e(H),
and n ≥ v(H) + k; and define Jk,`(H,n) as in (8). Then

|Jk,`(H,n)|=mk,`(H)(n− v(H))k .
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PROOF. Multiplying both sides by |Aut(H)|, it suffices to construct a bi-
jection φ from {(H̃, σ) ∈ Jk,`(H,n) × Aut(H)} to {(H1, H2, ρ, (x1, . . . , xk)) :
H1, H2 ∈ Hk,`(H), ρ ∈ IsoH(H1, H2), (x1, . . . , xk) ∈ ([n] \ V (H))k}. Here (X)k
is the set of all k-sequences (x1, . . . , xk) with distinct entries from the set X.
To define φ on (H̃, σ), let θ

H̃
∈ Iso(H̃,H) be fixed, depending only on H̃ and

not on σ. For example, θ
H̃

could be chosen so that when {θ
H̃

(i) : i ∈ V (H̃)}
is sorted with respect to i, θ

H̃
gives the lexicographically least list. Let H1 =

H̃ ∩ H, let H2 = (σ ◦ θ
H̃

)(H1), and let ρ = (σ ◦ θ
H̃

)|V (H1) be the restric-

tion of σ ◦ θ
H̃
∈ Iso(H̃,H) to V (H1). For all i, j ∈ V (H1), if {ρ(i), ρ(j)} ∈

E(H)\E(H2), then {i, j} 6∈ E(H)\E(H1); otherwise {i, j} lies in both E(H)
and in E(H̃), since σ ◦ θ

H̃
preserves edges, and thus {i, j} ∈ E(H1). Thus the

restriction on ρ in (9) is observed. Finally, define (x1, . . . , xk) to be the vertices
of V (H̃) \ V (H) ordered so that ((σ ◦ θ

H̃
)(xi) : 1 ≤ i ≤ k) is in increasing

order.

Now assume (H̃, σ) 6= (H̃ ′, σ′) and consider φ((H̃, σ)) = (H1, H2, ρ, (x1, . . . , xk))
and φ((H̃ ′, σ′)) = (H ′1, H

′
2, ρ
′, (x′1, . . . , x

′
k)). In order to show φ((H̃, σ)) 6=

φ((H̃ ′, σ′)), first suppose H̃ = H̃ ′ but σ 6= σ′; in particular θ
H̃

= θ
H̃′

and
H1 = H ′1. Additionally assume H2 = H ′2 and ρ = ρ′. Since σ 6= σ′, there must
exist x ∈ V (H̃)\V (H) such that (σ◦θ

H̃
)(x) 6= (σ′◦θ

H̃
)(x). Then x appears in a

different position in (x1, . . . , xk) than in (x′1, . . . , x
′
k). Second suppose H̃ 6= H̃ ′.

Assume that H1 = H ′1, H2 = H ′2, ρ = ρ′, and {x1, . . . , xk} = {x′1, . . . , x′k} (as
sets). It remains to show that (x1, . . . , xk) 6= (x′1, . . . , x

′
k) (as sequences). As

H̃ 6= H̃ ′ and H1 = H ′1, there must exist y1, y2 ∈ V (H̃) = V (H̃ ′) such that
{y1, y2} ∈ E(H̃)\E(H̃ ′). In particular, this forces ((σ◦θ

H̃
)(y1), (σ◦θ

H̃
)(y2)) 6=

((σ′ ◦ θ
H̃′

)(y1), (σ′ ◦ θ
H̃′

)(y2)), say due to (σ ◦ θ
H̃

)(y1) 6= (σ′ ◦ θ
H̃′

)(y1), since
graph isomorphism preserves edges and non-edges. Since ρ = ρ′, y1 must be in
V (H̃) \ V (H1) and so its position in (x1, . . . , xk) is distinct from its position
in (x′1, . . . , x

′
k). Therefore φ is one-to-one.

To show φ is onto, fix (H1, H2, ρ, (x1, . . . , xk)). Define θ′ : V (H1)∪{x1, . . . , xk} →
V (H) as follows. Let θ′ = ρ on V (H1). Let θ′(xi) be the ith lowest element
in V (H) \ V (H2). Define H̃ by letting {y1, y2} ∈ E(H̃) iff {θ′(y1), θ′(y2)} ∈
E(H), so that θ′ ∈ Iso(H̃,H). In particular |E(H̃) \ E(H)| = `, since ρ ∈
IsoH(H1, H2). Let θ

H̃
be the previously determined element of Iso(H̃,H), and

define σ by σ ◦ θ
H̃

= θ′; that is, σ = θ′ ◦ θ−1

H̃
∈ Aut(H). Then φ(H̃, σ) =

(H1, H2, ρ, (x1, . . . , xk)), and φ is onto. �

Immediately by Lemmas 2.1, 2.3, and 2.4; by replacing xky` in (11) with
(n− v(H))k(p

` − pe(H)), we have the following.
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Corollary 3.3 Let H ⊆ Kn be a graph, where n ≥ 2v(H). Then ν(XH) =

v(H)∑
k=0

e(H)∑
`=0

∑
H̃∈Jk,`(H,n)

(
p` − pe(H)

)
=

v(H)∑
k=0

e(H)∑
`=0

mk,`(H)(n− v(H))k
(
p` − pe(H)

)
;

furthermore, if H is connected, then the contribution to ν(XH) corresponding
to Σ̂R(H) is

(1 + o(1))
v(H)−max(v(C(H)),2)∑

k=0

mk,k(H)(n− v(H))k
(
pk − pe(H)

)
, (12)

for p = o(n
−1/a−

C(H)) when C(H) is non-null, and for arbitrary p = o(1) when
H is a tree. �

Here, o(1) means asymptotically strictly less than any constant function as
n → ∞. The relative order of m(G) and a−C(H) is arbitrary in general. For a

strictly balanced graph, m(G) < a−C(H), but m(G) > a−C(H) when C(H) is a
large complete graph with a cycle attached. Equality can hold when C(H) is
the disjoint union of strictly balanced graphs, such as the union of cycles, by
Lemma 2.4.

3.1 When H is connected with non-null 2-core

In view of (12), define M̂(H;x) :=
∑v(H)−max(v(C(H)),1)
k=0 mk,k(H)xk. When H is

a tree, k = v(H)− 1 is artificially added to the summation for convenience of
stating Theorem 3.10; this contributes 0 to ν(XH). Our strategy for producing
M̂(H;x) is to grow H̃ by first mapping C(H̃) onto C(H) using an automor-
phism, and by then mapping each tree attached to a vertex of C(H̃) on the
tree of its isomorphically corresponding vertex in C(H). We constrain the
overall mapping to exclude disconnected H̃ ∩H, but allow all other possible
choices for H̃ ⊆ Kn, which comprise

⋃
k≥0 Jk,k(H,n) (see (8)).

We require some notation for rooted trees and symmetry groups involved in
the computation. A rooted tree (T, i) is a tree T with a distinguished root
vertex i ∈ V (T ), denoted simply by T when the root is clear from context.
The null graph ∅ is neither a tree nor can it be rooted. The rooted subtrees
of (T, i) are exactly the rooted trees {(T (j), j) : j ∼ i}, where T (j) is the
connected component of T [V (T ) \ {i}] containing j. Two rooted trees (T1, i),
(T2, j) are isomorphic, written (T1, i) ∼= (T2, j), provided there exists a graph
isomorphism π : T1 → T2 such that π(i) = j. The group of all such isomor-
phisms is denoted Iso(T1,T2), and the group of rooted tree automorphisms
on T is Aut(T ) := Iso(T, T ).
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A coloring of C(H) (or more generally any graph) is a mapping c : V (C(H))→
[r], for some positive integer r. Given C(H) with a coloring c, an automorphism
π : C(H) → C(H) is color-preserving if for all i ∈ V (C(H)), c(π(i)) = c(i).
Denote the group of these color-preserving automorphisms by Autc(C(H)),
which in general is not a normal subgroup of Aut(C(H)). By convention we
consider the left cosets {πAutc(C(H)) : π ∈ Aut(C(H))} in Autc(C(H)),
and define Sc(C(H)) to be an arbitrary set of representatives of these left
cosets. Removing the edges E(C(H)) from H results in a forest of |V (C(H))|
trees, each of which we view as being rooted in V (C(H)). Thus for each
i ∈ V (C(H)), define T (H, i) to be the unique tree in the graph (V (H), E(H)\
E(C(H))) containing vertex i, with i as its root. We construct a coloring of
V (C(H)) based on the types of trees rooted in V (C(H)) as follows.

Definition 3.4 Define an equivalence relation on V (C(H)) by i ∼ j iff T (H, i) ∼=
T (H, j) for i, j ∈ V (C(H)), and let r be the number of distinct equivalence
classes. A tree-coloring c of C(H) is any coloring c : V (C(H))→ [r] such that
for all i, j ∈ V (C(H)), c(i) = c(j) iff T (H, i) ∼= T (H, j).

The following lemma shows that
⋃
k≥0 Jk,k(H,n) can be enumerated by par-

titioning over Sc(C(H)), which is the first step of our computational formula
for M̂(H;x).

Lemma 3.5 Let H ⊆ Kn be connected with non-null 2-core C(H), 0 ≤ k ≤
v(H) − v(C(H)), and let H̃ ∈ Jk,k(H,n). Let c be a tree-coloring of C(H).
Then there exists a unique π ∈ Sc(C(H)) such that c ◦ π−1 is a tree-coloring
of C(H̃) with T (H, π−1(i)) ∼= T (H̃, i) for all i ∈ V (C(H̃)).

PROOF. Let θ ∈ Iso(H, H̃), and let π1 = θ|C(H). By design, π1 ∈ Aut(C(H)),

and T (H̃, i) ∼= T (H, θ−1(i)) for all i ∈ V (C(H̃)). Let π2 ∈ Autc(C(H)) such
that π := π1π2 ∈ Sc(C(H)). Then c ◦ π−1 is the desired tree-coloring of
C(H̃). Now let π′ ∈ Sc(C(H)) and suppose c ◦ π−1 = c ◦ π′−1. For arbitrary
i ∈ V (C(H̃)), π−1(i) = j and π′−1(i) = j′ for some j, j′ ∈ V (C(H)) with
c(j) = c(j′). But then π−1π′(j′) = j, so that π−1π′ ∈ Autc(C(H)), and π is
unique. �

Once π ∈ Sc(C(H)) in Lemma 3.5 is determined, H̃ is determined by how
each T (H̃, i) is mapped on T (H, i), and by which vertices of [n] \ V (H) fill
out the rest of H̃. These mappings are encoded in the following definition,
analogous to M(H;x, y), except that the overlay is required to be connected.

Definition 3.6 Let T = (T, i) and T ′ = (T ′, j) be trees rooted at i and j,

11



respectively. Define the rooted tree overlay polynomial

B(T, T ′;x) :=
∑

(T1,i)⊆T,(T ′1,j)⊆T ′

|Iso(T1, T
′
1)|

|Aut(T ′)|
xv(T ′)−v(T ′1),

where the sum is over all rooted subtrees T1 and T ′1 with the same roots as T
and T ′, respectively; and the base cases are B(∅, T ′;x) := xv(T ′)/|Aut(T ′)| and
B(T, ∅;x) := 1.

Theorem 3.7 Let H be a connected graph with non-null 2-core C(H), and
let c be a tree-coloring of C(H). Then

M̂(H;x) =
∑

π∈Sc(C(H))

∏
i∈V (C(H))

B(T (H, i), T (H, π(i));x) , (13)

where for i ∈ V (C(H)), the rooted tree T (H, i) is the unique connected com-
ponent of (V (H), E(H) \ E(C(H))) containing and rooted at i.

PROOF. As in Definition 3.4, let c be a tree-coloring of C(H). For conve-
nience, define the indexing set Tk(H) := {(Ti ⊆ T (H, i) : i ∈ V (C(H))) :
v(H) − ∑ v(Ti) = k} to be the set of all sequences of rooted subtrees with
roots in V (C(H)) and v(H) − k total vertices; by removing E(C(H)) from
E(H), these sequences are in bijection with Hk,k(H). Further define T (H) :=⋃v(H)−v(C(H))
k=0 Tk(H). First multiply M̂(H;x) by |Aut(H)|; a line-by-line justi-

fication for each step will follow.

M̂(H;x)|Aut(H)| =
v(H)−v(C(H))∑

k=0

∑
H1,H2∈Hk,k(H)

|Iso(H1, H2)|xk (14)

=
v(H)−v(C(H))∑

k=0

∑
H1,H2∈Hk,k(H)

∑
π∈Aut(C(H))∏

i∈V (C(H))

|Iso(T (H1, i), T (H2, π(i)))|xv(T (H,i))−v(T (H2,π(i))) (15)

=
v(H)−v(C(H))∑

k=0

∑
(Ti)∈Tk(H)

∑
(T ′i )∈Tk(H)

∑
π∈Aut(C(H))∏

i∈V (C(H))

|Iso(Ti, T
′
π(i))|x

v(T (H,i))−v(T ′
π(i)

)
(16)

=
∑

π∈Aut(C(H))

∑
(Ti)∈T (H)

∑
(T ′i )∈T (H)

∏
i∈V (C(H))

|Iso(Ti, T
′
π(i))|x

v(T (H,i))−v(T ′
π(i)

)

(17)

=
∑

π∈Aut(C(H))

∏
i∈V (C(H))

∑
Ti⊆T (H,i)

T ′
π(i)
⊆T (H,π(i))

|Iso(Ti, T
′
π(i))|x

v(T (H,i))−v(T ′
π(i)

)
(18)

12



= |Autc(C(H))|
∑

π∈Sc(C(H))

∏
i∈V (C(H))

|Aut(T ′π(i))|

∑
Ti⊆T (H,i)

T ′
π(i)
⊆T (H,π(i))

|Iso(Ti, T
′
π(i))|

|Aut(T ′π(i))|
x
v(T (H,i))−v(T ′

π(i)
)
. (19)

Because |Aut(H)| = |Autc(C(H))|∏i |Aut(T ′π(i))|, and by Definition 3.6, the
last line is |Aut(H)| times the right-hand side of (13). Definition 3.1 imme-
diately gives (14). An element ρ ∈ Iso(H1,H2) is determined by a sequence
of choices: restricted to C(H), π = ρ|C(H) is an automorphism, and restricted
to T (H1, i), ρ is a rooted tree isomorphism onto T (H2, π(i)). Additionally,
k =

∑
i∈V (C(H)) v(T (H, i)) − v(T (H2, π(i))) since H2 ∈ Hk,k(H), giving (15).

Equation (16) is reached by the previously mentioned definition and proper-
ties of Tk(H). For (17), the sum over k is removed by indexing over T (H)
instead of Tk(H). When

∑
v(Ti) 6=

∑
v(T ′i ), there is no newly appearing con-

tribution, since v(Ti) 6= v(T ′π(i)) is forced for some i, causing Iso(Ti, T
′
π(i)) = ∅.

The sum over π is brought outside as it is independent of the choices of Ti, T
′
i .

A straightforward factorization of the polynomial in terms of the possible
contribution of (Ti, Tπ(i)) yields (18). To obtain (19), multiply and divide by∏
i |Aut(T ′π(i))|. Lemma 3.5 allows us to group π ∈ Aut(C(H)) by left coset

representative in Sc(C(H)). When π1, π2 ∈ Aut(C(H)) are in the same left
coset of Autc(C(H)), the resulting terms of the summation are identical, since
T (H, π1(i)) ∼= T (H, π2(i)) for all i ∈ C(H). �

The final step in obtaining a computational formula for M̂(H;x) is to express
B(T, T ′;x) recursively in terms of rooted subtrees of T and T ′. Before pre-
senting the theorem, we require the following definitions to encode mappings
of subtrees of T ′ to those of T , and to group those mappings according to
subtree isomorphism.

Definition 3.8 Let T and T ′ be rooted trees with roots r(T ) and r(T ′), re-
spectively. Let T1, . . . , Tm be the m distinct isomorphism types of the rooted
subtrees T (i) of T , and for all 1 ≤ a ≤ m, define ka to be the number of rooted
subtrees T isomorphic to Ta. Similarly for T ′, define T ′1, . . . , T

′
m′, m

′, and k′b,
for all 1 ≤ b ≤ m′. Define F(T, T ′) to be the set of all overlay functions

f : {i : {i, r(T )} ∈ E(T )} → {j : {j, r(T ′)} ∈ E(T ′)} ∪ {∅}

such that |f−1({j})| ≤ 1 for j 6= ∅ (the codomain value ∅ is formal, and is
disjoint from V (T ) ∪ V (T ′)). Further define the set of all overlay multiplicity
vectors Γ(T, T ′) := {γ(f) : f ∈ F(T, T ′)}, where

γ(f) := (γab(f) : a ∈ {0, 1, . . . ,m}, b ∈ {0, 1, . . . ,m′}, (a, b) 6= (0, 0)) ,
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and

γab(f) :=


|{i : f(i) = j, j 6= ∅, T (i) ∼= Ta, T

′(j) ∼= T ′b}| , a 6= 0 and b 6= 0;

|{i : f(i) = ∅, T (i) ∼= Ta}| , a 6= 0 and b = 0;

|{j : f−1({j}) = ∅, T ′(j) ∼= T ′b}| , a = 0 and b 6= 0.

Consequently, the elements f of F(T, T ′) are partitioned based on γ(f).

Theorem 3.9 Let T and T ′ be rooted trees, with associated quantities as in
Definition 3.8. Then

B(T, T ′;x) =
∑

γ∈Γ(T,T ′)

m∏
a=1

( ka
γa1, . . . , γam′

)
m′∏
b=1

B(Ta, Tb;x)γab

 m′∏
b=1

xv(T ′b)γ0b

γ0b!|Aut(T ′b)|γ0b
.

(20)

PROOF. For convenience of notation, define U(T ) := {(T1(i) ⊆ T (i) :
{i, r(T )} ∈ E(T ))}. Here T (i) is the rooted subtree of T with root i ∼ r(T ).
We abuse notation for this proof only and allow T1(i) to be either the null
graph ∅, or any rooted tree with root i, which is also a subgraph of T (i). The
rooted trees (T1, r(T )) for which T1 ⊆ T as graphs are in bijection with the
sequences of U(T ), since removal of r(T ) from T1 determines the T1(i)’s. We
additionally define |Iso(∅, ∅)| = 1 and observe that |Iso(∅, T )| = |Iso(T, ∅)| = 0
for any non-null T to allow general decomposition of rooted tree isomorphisms.
First multiply B(T, T ′;x) by |Aut(T ′)| and apply Definition 3.6; a line-by-line
justification for each step will follow.

|Aut(T ′)|B(T, T ′;x) =
∑

(T1,r(T ))⊆T
(T ′1,r(T

′))⊆T ′

|Iso(T1, T
′
1)|xv(T ′)−v(T ′1) (21)

=
∑

(T1(i))∈U(T ),

(T ′1(j))∈U(T ′)

∑
f∈F(T,T ′),

f(i)=∅⇔T1(i)=∅,
f−1({j})=∅⇔T ′1(j)=∅

 ∏
i∼r(T ),

f(i)6=∅

|Iso(T1(i), T ′1(f(i)))|xv(T ′(f(i)))−v(T ′1(f(i)))


 ∏
i∼r(T ),

f(i)=∅

|Iso(T1(i), ∅)|


 ∏

j∼r(T ′),
f−1({j})=∅

|Iso(∅, T ′1(j))|xv(T ′(j))

 (22)

=
∑

f∈F(T,T ′)


∏

i∼r(T )

f(i)6=∅

∑
∅6=T1(i)⊆T (i)

∅6=T ′1(f(i))⊆T ′(f(i))

|Iso(T1(i), T ′1(f(i)))|xv(T ′(f(i)))−v(T ′1(f(i)))


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 ∏
j∼r(T ′)

f−1({j})=∅

xv(T ′(j))

 (23)

=
∑

f∈F(T,T ′)

 ∏
i∼r(T )

f(i)6=∅

|Aut(T ′(f(i)))|B
(
T (i), T ′(f(i))

)
 ∏

j∼r(T ′)
f−1({j})=∅

|Aut(T ′(j))|B(∅, T ′(j))

 (24)

=
∑

γ∈Γ(T,T ′)

m∏
a=1

( ka
γa1, . . . , γam′

)
m′∏
b=1

|Aut(T ′b)|γabB(Ta, T
′
b;x)γab


m′∏
b=1

k′b!

γ0b!
|Aut(T ′b)|γ0bB(∅, T ′b)γ0b . (25)

This last line is |Aut(T ′)| times the right-hand side of (20), by observing
that an automorphism on T ′ is obtained by first permuting isomorphic rooted
subtrees in

∏
k′b! ways, and then applying an automorphism to each rooted

subtree in
∏
a

∏
b 6=0 |Aut(T ′b)|γab ways. Equation (22) is obtained by observing

that ρ ∈ Iso(T1, T
′
1) determines an overlay function f ∈ F(T, T ′) on the rooted

subtrees T1(i) and T ′1(j). Null T1(i)’s and T ′1(j)’s must map to null graphs.
Factorization yields (23), where the sum over f is brought out front by re-
stricting T1(i) and T ′1(j) to be null exactly when f(i) = ∅ and f−1({j}) = ∅,
respectively. Applying Definition 3.6 yields (24). We obtain (25) by counting

|{f : γ(f) = γ}| =
m∏
a=1

(
ka

γa1, . . . , γam′

)
m′∏
b=1

k′b!

γ0b!

by a routine argument. To this end, fix γ. Construct f by, for each a =
1, . . . ,m, apportioning the ka rooted subtrees T (i) of type (i.e., isomorphism
class) Ta into distinct subtypes Ta1, . . . , Tam′ with multiplicities γa1, . . . , γam′ ,
and with γa0 left over. Now for each b 6= 0, Canonically order the rooted
subtrees T (i) of subtypes T1b, . . . , Tmb; and separately canonically order the k′b
rooted subtrees T ′(j) of type T ′b. Permute all k′b of these rooted subtrees, and
un-permute the last γ0b which will not match a T (i). Finally, match each T (i)
to a T ′(j) by setting f(i) = j starting from the top of each resulting order. �
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3.2 When H is a tree

If H is a tree, any isomorphic copy H̃ ∈ Jk,k(H,n) intersects H in a subtree.

Therefore computing M̂(H;x) amounts to selecting pairs of roots i, j ∈ V (H),
computing rooted tree overlay polynomials B((H, i), (H, j);x), and compen-
sating for over-counting due to multiple choices of rootings leading to a single
intersection, and due to the automorphism group on H.

Theorem 3.10 Let H be a tree, and let {[i] ⊆ V (H)} be the set of equivalence
classes of V (H) defined by i1 ∼= i2 if there is an automorphism of H sending
i1 to i2. Then

M̂(H;x) =

(
xk → xk

v(H)− k

) ∑
[i],[j]

|[i]|B((H, i), (H, j);x) , (26)

where (H, i) is H rooted at i, and
(
xk → xk

v(H)−k

)
is the polynomial transfor-

mation sending
∑
j cjx

j to
∑
j cjx

j/(v(H)− j).

PROOF. First multiply M̂(H;x) by |Aut(H)|; a line-by-line justification for
each step will follow.

M̂(H;x)|Aut(H)| =
v(H)−1∑
k=0

∑
H1,H2∈Hk,k(H)

|IsoH(H1, H2)|xk

=
v(H)−1∑
k=0

∑
H1,H2∈Hk,k(H)

∑
i∈V (H1),j∈V (H2)

|Iso((H1, i), (H2, j))|
v(H)− k

xk (27)

=
∑

i,j∈V (H)

∑
(H1,i)⊆H,(H2,j)⊆H

|Iso((H1, i), (H2, j))|
v(H)− k

xv(H)−v(H2) (28)

=
∑

i,j∈V (H)

|Aut((H, j))|
(
xk → xk

v(H)− k

)
B((H, i), (H, j);x) (29)

Equation (27) is reached by identifying each graph isomorphism ρ ∈ IsoH(H1, H2)
with v(H1) = v(H) − k rooted tree isomorphisms; letting i ∈ H1 and setting
j = ρ(i) ∈ H2 yields an element of Iso((H1, i), (H2, ρ(i))). To obtain (28), the
sum over k is removed by letting H1 and H2 range over all subtrees of H,
and the sum over i and j brought out front by rooting H1 at i and H2 at j.
Applying Definition 3.6 yields (29). To obtain the right-hand side of (26), note
that |Aut(H)| = |[j]||Aut((H, j))|, since an automorphism of H permutes j
within its equivalence class and then applies a rooted tree automorphism of
|Aut((H, j))|. �
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4 Concluding remarks

In the authors’ opinion, the most interesting applications of the formulas for
M̂(H;x) are direct computation of the asymptotic variance of XH at the
threshold p = cn−1/m(H) (i) whenH is a cycle with trees attached arbitrarily by
their roots (balanced with strictly balanced 2-core), and (ii) when H is a tree.
In both cases the distribution of XH has finite expectation and finite variance.
Additional cases can be analyzed by restriction starting from Corollary 3.3.
The variance formula of (12) is asymptotically correct but tends to infinity
when the 2-core of H is denser than a cycle and p is such that 0 < P(XH >
0) < 1. The usefulness of the symmetry-infused graph and rooted tree overlay
polynomials M(H;x, y) and B(T, T ′;x), which are valid independent of the
random graph process, bears further investigation, as does the derivation of
better estimates for the variance within individual families of subgraphs.
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