Group Members: _

Defn. Let $t, s \in \mathbb{Z}$ be integers; t is a *divisor* of s ("t divides s," "t|s") if there is an integer u such that $s = t \cdot u$.

- (1a) Write the positive divisors of 12.
- (1b) Write the negative divisors of 75.
- (1c) Write the set of numbers which 0 divides.
- (1d) Write the set of numbers which divide 0.

Defn. A *prime* number is a positive integer p > 1 such that the only positive divisors of p are 1 and p.

(2) Quickly list all prime numbers between 1 and 60, inclusive. (Hint: share the work.)

Theorem 0.1. Division Algorithm. Let a and b be integers with b > 0. Then there exist unique integers q and r with the property that a = bq + r, where $0 \le r < b$.

\				1		1					
q	• • •								•••		
45 - 15q	•••								•••		
(3b) Let $a = 18$, $b = 5$. Find the values of q such that $a - bq$ is closest to 0.											
q	•••								•••		
18 - 5q	•••								•••		
(3c) Let $a = -34$, $b = 6$. Find the values of q such that $a - bq$ is closest to 0.											
q	•••								• • •		
-34 - 6q	•••								• • •		
(01) II 1		, 1	C (1	1	• • 1		1 4 9 10	•			

(3a) Let a = 45, b = 15. Find the values of q such that a - bq is closest to 0.

(3d) How do we get q and r for the division algorithm from this data? Be precise.

Break I. Well Ordering Principle and existence proof for the division algorithm.

Defn. The greatest common divisor (gcd) of two nonzero integers a and b is the largest integer d which divides both a and b. If gcd(a, b) = 1, then we say that a and b are relatively prime.

(4a) Name or briefly describe two distinct methods for computing gcd(a, b).

(4b) Compute gcd(60, 490) with the first method and gcd(-130, 56) with the second method.

Defn. An *integer linear combination* of two integers a and b is some as + bt, where s, t are integers.

(5a) Find 3 integer linear combinations of 60 and 490 as close to 0 as possible.

(5b) Find 3 integer linear combinations of -130 and 56 as close to 0 as possible.

(6) Back-solve one of the methods in problem (4b) to get the gcd as an integer linear combination of a and b.

Theorem 0.2. GCD as a Linear Combination. For any nonzero a and b, there exist integers s and t such that gcd(a,b) = as + bt. Moreover, gcd(a,b) is the smallest positive integer of the form as + bt.

Break II. Well Ordering Principle, gcd as an integer linear combination, Euclid's lemma, Fund. Thm. of Arithmetic.

Modular Arithmetic

Defn. Let a and b be integers with b > 0. We define a mod b to be the remainder r obtained by dividing a by b in the Division Algorithm.

(7a) Compute $a \mod 4$ for various values of a and complete the table.

	-3	-2	-1	0	1	2	3	4	5
$a \mod 4$									
$a - (a \mod 4)$									

(7b) Make a conjecture from the data generated in third row.

Proposition (Modular computation shortcuts). Let a, b, and n be integers with n > 0. Let $a' = a \mod n$ and $b' = b \mod n$. Then

(i) $(a+b) \mod n = (a'+b') \mod n$, and

(ii) $ab \mod n = a'b' \mod n$.

(8) Use the above to compute $(248881 + 100642) \mod n$ and $(248881 \cdot 100642) \mod n$.

Mathematical Induction

Theorem 0.4. First Principle of Mathematical Induction. Let S be a set of integers containing a. Suppose S has the property that whenever some integer $n \ge a$ belongs to S, then the integer n + 1 also belongs to S. Then, S contains every integer greater than or equal to a.

Theorem 0.5. Second Principle of Mathematical Induction. Let S be a set of integers containing a. Suppose S has the property that n belongs to S whenever every integer les than n and greater than or equal to a belongs to S. Then, S contains every integer greater than or equal to a.

(9) (Write on attached sheet.) Carefully prove using induction that for every positive integer $n, 1 + 2 + \cdots + n = n(n+1)/2$.

(10) Find the largest value of postage which cannot be composed of 4 cent and 9 cent stamps. Prove that this is the largest such value.