Group Members:

Defn. A binary operation on a set G is a function that assigns to each ordered pair $(a, b) \in G$ an element c of G. $*: G \times G \rightarrow G$

> $(a,b) \xrightarrow{*} c,$ in other words, a * b = c.

Defn. A group is a nonempty set G together with a binary operation mapping each $(a, b) \in G \times G$ to $ab \in G$, along with the properties:

1. Associativity. For all $a, b, c \in G$, (ab)c = a(bc).

2. Identity. There exists an element $e \in G$, called the *identity*, such that ae = ea = a for all $a \in G$.

3. Inverses. For each element $a \in G$, there is an element $b \in G$, called the *inverse* of a, such that ab = ba = e.

(1) Examples and counterexamples of binary operations.

(a) List two binary operations which could be applied to \mathbb{R} , \mathbb{C} , \mathbb{Q} , and \mathbb{Z} .

(b) List two binary operations on \mathbb{Z}_n , the integers mod *n* for some integer n > 0.

(c) List two binary operations on $M(2,\mathbb{R})$, the set of 2×2 matrices over the real numbers, along with the formulas describing the result of the binary operations.

(2) Show by counterexample that division over the nonzero reals \mathbb{R}^* and subtraction over \mathbb{Z} are not associative.

- (3) Give the identity element for the following G and binary operation:
- (a) Multiplication over nonzero rationals, \mathbb{Q}^* (b) Addition over \mathbb{Z} ,
- (d) The positive rationals \mathbb{Q}^+ under the binary operation $(a, b) \to ab/2$.
- (c) Multiplication over $M(2,\mathbb{R})$.

- (4) Describe the inverse element for the following G and binary operation:
- (a) The complex numbers with modulus 1 $\{e^{i\theta}: 0 \le \theta < 2\pi\}$ under multiplication,
- (b) The positive rationals \mathbb{Q}^+ under the binary operation $(a, b) \to ab/2$.
- (c) Explain why we shouldn't even look for inverses in the integers under subtraction.

Break. Matrix groups.

(5) Mimic the proof of Euclid's Lemma to prove this minor extension: Let a, b, c be positive integers. If a|bc and gcd(a, b) = 1, then a|c.

Break. Uniqueness of inverses for the integers under multiplication mod n.

Defn. The group U(n) is defined to be the set $U(n) = \{a \in \{0, 1, \dots, n-1\} : gcd(a, n) = 1\}$ under multiplication mod n.

(6) Construct the Cayley tables for U(8) and U(10). Next to each Cayley table, list the elements in pairs with their inverses.