Group Members: Refer to the Cayley Table of D_4 on p. 33, and the table of D_3 below. - (1a) What is the center of D_3 ? What are the centralizers $C(R_0)$, $C(R_{120})$, and $C(F_1)$? - (1b) What is the center of D_4 ? What are the centralizers $C(R_{90})$, $C(R_{180})$, and C(H)? | D_3 | R_0 | R_{120} | R_{240} | F_1 | F_2 | F_3 | |-----------|-------------------------------|-----------|-----------|-----------|-----------|-----------| | R_0 | R_0 | R_{120} | R_{240} | F_1 | F_2 | F_3 | | R_{120} | R_{120} | R_{240} | R_0 | F_3 | F_1 | F_2 | | R_{240} | R_{120} R_{120} R_{240} | R_0 | R_{120} | F_2 | F_3 | F_1 | | | F_1 | | | | | R_{240} | | | F_2 | F_3 | F_1 | R_{240} | R_0 | R_{120} | | F_3 | F_3 | F_1 | F_2 | R_{120} | R_{240} | R_0 | - (2a) Make a conjecture for the center of the dihedral group D_n for $n \geq 3$ (plane symmetries of the regular n-gon). - (2b) Make a conjecture for the centralizer of a reflection in D_n for $n \geq 3$. - (3) For this question, collect data about orders of elements and about powers of elements of cyclic groups, grouped according to when different powers yield the same element. The groups are \mathbb{Z}_5 , \mathbb{Z}_6 , and \mathbb{Z}_8 . | a | a^1 | a^2 | a^3 | a^4 | a^5 | a | sets of $\{i, j, k \dots \mid a^i = a^j = a^k \dots \}$ | |---|-------|-------|-------|-------|-------|---|---| | 0 | | | | | | | | | 1 | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | 4 | | | | | | | | | ' | ı | | | | | l | | | a | a^1 | a^2 | a^3 | a^4 | a^5 | a^6 | a | sets of $\{i, j, k \dots \mid a^i = a^j = a^k \dots \}$ | |---|-------|-------|-------|-------|-------|-------|---|---| | 0 | | | | | | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | | 3 | | | | | | | | | | 4 | | | | | | | | | | 5 | | | | | | | | | | a | a^1 | a^2 | a^3 | a^4 | a^5 | a^6 | a^7 | a^8 | a | sets of $\{i, j, k \dots \mid a^i = a^j = a^k \dots \}$ | |---|-------|-------|-------|-------|-------|-------|-------|-------|---|---| | 0 | | | | | | | | | | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | 3 | | | | | | | | | | | | 4 | | | | | | | | | | | | 5 | | | | | | | | | | | | 6 | | | | | | | | | | | | 7 | | | | | | | | | | | (4a) Conjecture a condition for when $a \in \mathbb{Z}_n$ is a generator of \mathbb{Z}_n . (4a) Conjecture a condition for when $a^i = a^j$ in \mathbb{Z}_n . ## Break. **Theorem 4.1 Criterion for** $a^i=a^j$. Let G be a group, and let $a\in G$. If $|a|=\infty$, then all distinct powers of a are distinct group elements. If $|a|<\infty$, say |a|=n, then $\langle a\rangle=$ _____ and $a^i=a^j$ iff Corollary 1 $|a| = |\langle a \rangle|$. For any group element $a, |a| = |\langle a \rangle|$. Corollary 2 $a^k = e \Rightarrow |a||k$. Let G be a group and let $a \in G$ be an element of order n. If $a^k = e$, then n divides k.