Group Members: ____

Definition: Coset of H in G

Let $a \in G$ and let H be a subgroup of a group G. The *left coset* of H in G containing a is

 $aH := \{ah \mid h \in H\},\$

and the *right coset* of H in G containing a is

$$Ha := \{ ha \, | \, h \in H \}.$$

For later use, define $aHa^{-1} = \{aha^{-1} | h \in H\}$. If a coset contains a, then a is a coset representative of that coset.

(1) Refer to page 105 for this question. Let $G = A_4$ and let $H = \{\alpha_1, \alpha_5, \alpha_9\}$. Compute all of the left cosets of H in G in the following fashion:

(I) Pick an element a that has not appeared yet in any coset.

(II) Compute the coset containing this element a (multiply by every $h \in H$).

(III) Stop when all elements appear in a coset. Write your answers in the form $aH = \dots, bH = \dots$, etc.

(2) Repeat (1) except this time compute the right cosets of $\{\alpha_1, \alpha_5, \alpha_9\}$ in A_4 .

(3) Determine the cosets of $2\mathbb{Z}$ (the even integers) in the integers \mathbb{Z} (under addition). Does it matter if it is left or right cosets? Why or why not?

(4) Let G be a group with subgroup $H \leq G$. Prove that if $a \in Z(G)$, then aH = Ha.

Lemma: Properties of Cosets. Let H be a subgroup of a group G, and let $a, b \in G$. Then, 1. $a \in aH$, 2. aH = H iff $a \in H$, 3. aH = bH or $aH \cap bH = \emptyset$, 4. aH = bH iff $a^{-1}b \in H$, 5. |aH| = |bH|, 6. aH = Ha iff $H = aHa^{-1}$, 7. $aH \leq G$ iff $a \in H$.

(5) How can we understand the Lemma part 2 from the permutations constructed in Cayley's Theorem? (Hint: consider the mapping $T_a: H \to H$ defined by $T_a(h) = ah$.)

(6) Every element $a \in G$ gives a left coset aH in G. Go back to (1) and compute the left cosets for those elements a that you didn't use already. Compare the results to the Lemma parts 3, 4, and 5.

(7) In questions (1-3), find the cosets for which aH = Ha.

Cosets partition G. From the Lemma we know that (i) the cosets of H in G are the same size, (ii) the union of the cosets of H in G is G, and (iii) cosets are *pairwise disjoint*. If G is finite there is a finite list of cosets. In this case the **set** of cosets $\{a_1H, a_2H, \ldots, a_rH\}$ **partition** G. If a_1H, \ldots, a_rH are written without repeated cosets, then

$$\sum_{i=1}^{r} |a_i H| = |G| \quad (all \ a \in G \text{ appear in some coset})$$
$$r \cdot |H| = |G| \quad (all \text{ cosets have the same size}),$$

and so the order of a subgroup H divides the order of the group G when |G| is finite! This is Lagrange's Theorem.