Group Members: _

Lagrange's Theorem: |H| divides |G|If G is a finite group and H is a subgroup of G, the |H| divides |G|. Moreover, the number of distinct left (right) cosets of H in G is |G|/|H|.

Definition: Index of H in G

The *index* of H in G is written as |G:H| and defined to be the number of cosets of H in G.

Corollary 1 of Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then |G:H| = |G|/|H|.

(1) Prove that A_4 (with order 12) is a counterexample of the converse Lagrange's Theorem as follows. Assume there does exist an order 6 subgroup $H \leq A_4$. Take any order 3 element $a \in A_4$ and look at the cosets H, aH, and a^2H . What does the pigeonhole principle say about H, aH and a^2H ? Deduce that in all possible cases that $a \in H$. How many order 3 elements are there? What is the contradiction?

(2) Prove Corollary 2 of Lagrange's theorem: in a finite group, the order of each element of the group divides the order of the group.

Corollary 3 of Lagrange's Theorem A group of prime order is cyclic. Corollary 4 of Lagrange's Theorem Let G be a finite group, and let $a \in G$. Then $a^{|G|} = e$.

(4) Completely fill out the Cayley table for the group of order 6 which has an element a of order 3, and an element b of order 2 satisfying $ba = a^{-1}b$.

G			

Theorem 7.2: Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then G is isomorphic to Z_{2p} or D_p .

Definition: Stabilizer of a Point

Let G be a group of permutations of a set S. For each $i \in S$, let $\operatorname{stab}_G(i) = \{\phi \in G \mid \phi(i) = i\}$. We call $\operatorname{stab}_G(i)$ the stabilizer of i in G.

Definition: Orbit of a Point

Let G be a group of permutations of a set S. For each $s \in S$, let $\operatorname{orb}_G(s) = \{\phi(s) \mid \phi \in G\}$. The set $\operatorname{orb}_G(s)$ is called the *orbit of s under G*.

(5) Let $G = A_4$ be the group of even permutations on $\{1, 2, 3, 4\}$. Compute $\operatorname{stab}_G(1)$ and $\operatorname{orb}_G(1)$. What is the product of the sizes of these two sets?

(6) Let G be D_4 , the set of plane symmetries of the square with side length 2 centered at the origin. Let p be the point with Cartesian coordinates $(\sqrt{2}/2, \sqrt{2}/2)$. Compute $\operatorname{stab}_G(p)$ and $\operatorname{orb}_G(p)$. What is the product of the sizes of these two sets?

(7) Let G be a group of permutations of a set S and let $i \in S$. Prove that $\operatorname{stab}_G(i)$ is a subgroup of G.