Group Members:

Definition: Normal Subgroup

A subgroup H of a group G is called a *normal* subgroup if aH = Ha for all $a \in G$. We denote this by $H \lhd G$.

Equivalently, $H \triangleleft G$ when the left cosets of H in G are exactly the same as the right cosets of H in G.

Theorem 9.1: Normal Subgroup Test

A subgroup H of G is normal in G iff $xHx^{-1} \subseteq H$ for all $x \in G$.

(1) Let $G = D_4$ and let $\langle R_{90} \rangle$ be the group of rotations of G.

(a) Write out the elements of $R_{90}\langle R_{90}\rangle R_{90}^{-1}$. Do you get $\langle R_{90}\rangle$ back? (b) Write out the elements of $V\langle R_{90}\rangle V^{-1}$. Do you get $\langle R_{90}\rangle$ back?

(c) Write down the left cosets of $\langle R_{90} \rangle$ in G.

(d) Write out the right cosets of $\langle R_{90} \rangle$ in G.

(e) Inspect the Cayley Table of D_4 on p.33. What group do you get if you view each coset as a single element? This means combining/collapsing columns and rows according to coset membership.

- (2) Let $G = \mathbb{Z}_8$ and let $H = \{0, 4\}$ be a subgroup of G.
- (a) Write down the left cosets of H in G.
- (b) Write down the right cosets of H in G.
- (c) Alternatively, what does the fact that G is Abelian tell you about whether $H \triangleleft G$?
- (d) Write the Cayley Table of G except with columns and rows grouped by coset of H in G. What group do you get if you view each coset as a single element?

(3) Refer to p.105 for this question about A_4 , the rotations of the tetrahedron. Let $G = A_4$, and let $H = \{\alpha_1, \alpha_5, \alpha_9\}$. (Note that Table 5.1 is currently organized by the left cosets of $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ in G.)

- (a) Write down the left cosets of H in G.
- (b) Write down the right cosets of H in G.
- (c) Reorder the Cayley table of A_4 by grouping elements by left coset of H in G.
- (d) Is $H \lhd G$? Why or why not?

Definition: Factor Group Let G be a group and let H be a normal subgroup of G. The set

$$G/H := \{aH \mid a \in G\}$$

is a group under the operation (aH)(bH) = abH. (This group is revealed by grouping the elements Cayley table of G by the cosets of a normal subgroup H of G.)

(4) Recall that $2\mathbb{Z} = \{\ldots, -4, -2, 0, 2, 4, \ldots\}.$

(a) Why is $2\mathbb{Z} \triangleleft \mathbb{Z}$?

(b) What are the cosets of $2\mathbb{Z}$ in \mathbb{Z} ?

(c) Write the Cayley table for $\mathbb{Z}/2\mathbb{Z}$.

(5) Let $G = \mathbb{Z}_4 \oplus U(4)$, $H = \langle (2,3) \rangle$, and $K = \langle (2,1) \rangle$.

- (a) Is $H \approx K$?
- (b) Write the cosets and Cayley table for G/H.
- (c) Write the cosets and Cayley table for G/K.
- (d) Is $G/H \approx G/K$? (Expected, or a surprise?)