Group Members: _

Theorem: Index 2 Subgroups are Normal	
Let $ G $ be a group and $H \leq G$ such that $ G:H = 2$. Then $H \triangleleft G$.	

(1) Prove the above theorem using the following steps.

(a) Write the form of the two left cosets of H in G as H, aH.

(b) Draw the simple diagram of the partition of G into these left cosets. What must be true about a to guarantee that $H \neq aH$?

(c) Now consider H, Ha. Use the fact you observed about a to conclude that $H \neq Ha$. Why are these observations enough to conclude that $H \triangleleft G$? (Refer to p.138 if necessary.)

(2) For this question, refer to the above theorem, Theorem 9.2, and the Cayley table for A_4 on p.105. Assume $H \leq A_4$ and that |H| = 6 and arrive at a contradiction using the following steps. (Giving us a second proof that A_4 has no order 6 subgroup.)

(a) What does the above theorem say about H?

(b) Write the Cayley table for the factor group A_4/H in terms of the left cosets of A_4 .

(c) How many ways are there of writing the left coset aH, where $aH \neq H$?

(d) Compute a^2H using the Cayley table and Theorem 9.2. Which coset is a^2H ?

(e) Use p.138 to determine which coset a^2 lies in. Now look at the diagonal of the Cayley Table for A_4 to determine the size of the set $\{a^2 \mid a \in A_4\}$. Describe the contradiction that arises.

Theorem 9.3: The G/Z Theorem

Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, then G is Abelian.

Theorem 9.4: $G/Z(G) \approx \text{Inn}(G)$ For any group G, G/Z(G) is isomorphic to Inn(G).

Theorem 9.5: Cauchy's Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has an element of order p.

(3) Prove that if G is a non-Abelian group of order pq, where p, q are primes, then |Z(G)| = 1. Use the following steps.

(a) What does Lagrange's Theorem say about the possibilities for |Z(G)|?

- (b) Which possibility can you immediately rule out from the hypothesis on G?
- (c) Which possibility do you not have to check due to the conclusion of the statement?
- (d) For the other possibilities, what is |G/Z(G)|? Apply Corollary 3 on p.141 and Theorem 9.3.

(4) Use Theorem 9.4 to directly compute $Inn(D_4)$ by partitioning D_4 into the left cosets of $Z(D_4)$ and selecting one representative of each coset. See p.33.