Theorem 0.2. GCD Is a Linear Combination (integer linear combination).

For any nonzero integers a and b, there exist integers s and t such that

$$gcd(a,b) = as + bt$$
.

Moreover, gcd(a, b) is the smallest positive integer of the form as + bt.

Euclidean Algorithm. If a, b are positive integers, we may find gcd(a, b) by repeated use of the division algorithm to produce a decreasing sequence of integers $r_1 > r_2 > \cdots > r_k > 0$, where the last nonzero remainder r_k is equal to gcd(a, b).

$$\begin{array}{rl} a = bq_1 + r_1 & 0 < r_1 < b \\ b = r_1q_2 + r_2 & 0 < r_2 < r_1 \\ r_1 = r_2q_3 + r_3 & 0 < r_3 < r_2 \\ \vdots & \vdots \\ r_{k-3} = r_{k-2}q_{k-1} + r_{k-1} & 0 < r_{k-1} < r_{k-2} \\ r_{k-2} = r_{k-1}q_{k-1} + r_k & 0 < r_k < r_{k-1} \\ r_{k-1} = r_kq_{k+1} + 0 \end{array}$$

Theorem 0.2. Euclid's Lemma.

If p is a prime that divides ab, then p divides a or p divides b.

Theorem 0.3. Fundamental Theorem of Arithmetic.

Every integer greater than 1 is a prime or a product of primes. This product is unique, except for the order in which the factors appear. Thus if

$$n = p_1 p_2 \cdots p_r, \quad \text{and} \\ n = q_1 q_2 \cdots q_s,$$

where the p's and q's are primes, then r = s and, after renumbering the q's, we have $p_i = q_i$ for all i.

Proof of (9). Let S be the set of positive integers n satisfying

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Base case.

S contains 1 since $1 = \frac{1(1+1)}{2}$. <u>Inductive step.</u> Let n be a positive integer and suppose that $n \in S$. By this assumption,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Adding n + 1 to both sides, we have

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$1 + 2 + \dots + n + (n+1) = \frac{n^2 + n + 2n + 1}{2}$$

$$1 + 2 + \dots + n + (n+1) = \frac{n^2 + 3n + 1}{2}$$

$$1 + 2 + \dots + n + (n+1) = \frac{(n+1)[(n+1)+1]}{2}.$$

Therefore $n+1 \in S$.

By the First Principle of Mathematical Induction, S contains all positive integers.

Proof of (10). By exhaustion, we analyze the small postage values to see which can be composed of 4 and 9 cent stamps.

1		15	
2		16	$4 \cdot 4$
3		17	$1 \cdot 9 + 2 \cdot 4$
4	$1 \cdot 4$	18	$2 \cdot 9$
5		19	
6		20	$5 \cdot 4$
7		21	$1 \cdot 9 + 3 \cdot 4$
8	$2 \cdot 4$	22	$2 \cdot 9 + 1 \cdot 4$
9	$1 \cdot 9$	23	
10		24	$6 \cdot 4$
11		25	$1 \cdot 9 + 4 \cdot 4$
12	$3 \cdot 4$	26	$2 \cdot 9 + 2 \cdot 4$
13	$1 \cdot 9 + 1 \cdot 4$	27	$3 \cdot 9$
14		28	$7 \cdot 4$

Sketch of the rest of proof. Argue that $24, 25, 26, 27 \in S$, and for n > 27, $n - 4 \in S \Rightarrow n \in S$. The Second Principle of Mathematical Induction gives the desired result, namely, that 23 is the largest amount that cannot be composed of 4 and 9 cent stamps.

Question. How is the question related to expressing

$$1 = 4 \cdot s + 9 \cdot t, -1 = 4 \cdot s' + 9 \cdot t' ?$$