Theorem 6.2 Properties of Isomorphisms Acting on Elements.

Let G, \overline{G} be groups with respective identities e, \overline{e} . Let $k, n \in \mathbb{Z}$ and $a, b \in G$. Then

 $\begin{array}{ll} \mathbf{1.} \ \phi(e) = \overline{e}; \\ \mathbf{2.} \ \phi(a^n) = [\phi(a)]^n; \\ \mathbf{3.} \ ab = ba \ \mathrm{iff} \ \phi(a)\phi(b) = \phi(b)\phi(a); \\ \mathbf{4.} \ G = \langle a \rangle \ \mathrm{iff} \ \overline{G} = \langle \phi(a) \rangle; \\ \mathbf{5.} \ |a| = |\phi(a)|; \ \mathrm{and} \\ \mathbf{6.} \ |\{x \in G \ | \ x^k = b\}| = |\{x \in \overline{G} \ | \ x^k = \phi(b)\}|. \end{array}$

Proof of 1.

We have

e	=	ee	by identity in G
$\phi(e)$	=	$\phi(ee) = \phi(e)\phi(e)$	by operation preservation
$\overline{e}\phi(e)$	=	$\phi(e)\phi(e)$	by identity in \overline{G}
\overline{e}	=	$\phi(e)$	by right cancelation. \Box

Proof of 2. (Induction)

For n = 0, $\phi(a^0) = \phi(e) = \overline{e} = [\phi(a)]^0$. For n = 1, $\phi(a^1) = \phi(a) = [\phi(a)]^1$. For n = -1, $\phi(a^{-1})\phi(a) = \phi(a^{-1}a) = \phi(e) = \overline{e}$, and therefore $\phi(a^{-1}) = [\phi(a)]^{-1}$.

Now assume $\phi(a^n) = [\phi(a)]^n$ for some positive integer n and consider $\phi(a^{n+1})$:

$$\begin{aligned} \phi(a^{n+1}) &= \phi(a^n a) = \phi(a^n) \phi(a) & \text{by operation preservation} \\ &= [\phi(a)]^n \phi(a) & \text{by inductive assumption} \\ &= [\phi(a)]^{n+1}. \end{aligned}$$

Therefore by induction $\phi(a^n) = [\phi(a)]^n$ for all positive integers n. Now assume $\phi(a^n) = [\phi(a)]^n$ for some negative integer n and consider $\phi(a^{n-1})$:

$$\begin{aligned} \phi(a^{n-1}) &= \phi(a^n a^{-1}) = \phi(a^n)\phi(a^{-1}) & \text{by operation preservation} \\ &= [\phi(a)]^n [\phi(a)]^{-1} & \text{by inductive assumption and base case } n = -1 \\ &= [\phi(a)]^{n-1}. \end{aligned}$$

Therefore the statement holds for negative integer n, and thus for all $n \in \mathbb{Z}$.

Theorem 6.2 Properties of Isomorphisms Acting on Elements.

Let G, \overline{G} be groups with respective identities e, \overline{e} . Let $k, n \in \mathbb{Z}$ and $a, b \in G$. Then

1. $\phi(e) = \overline{e};$ 2. $\phi(a^n) = [\phi(a)]^n;$ 3. $ab = ba \text{ iff } \phi(a)\phi(b) = \phi(b)\phi(a);$ 4. $G = \langle a \rangle \text{ iff } \overline{G} = \langle \phi(a) \rangle;$ 5. $|a| = |\phi(a)|;$ and 6. $|\{x \in G \mid x^k = b\}| = |\{x \in \overline{G} \mid x^k = \phi(b)\}|.$

Proof of 3. We have that

ab = ba if and only if $\phi(ab) = \phi(ba)$ since ϕ is a bijective function if and only if $\phi(a)\phi(b) = \phi(b)\phi(a)$ since ϕ is operation preserving. \Box

Proof of 4. (\Rightarrow) Assume that $G = \langle a \rangle$. We must show $\overline{G} = \langle \phi(a) \rangle$. (\supseteq) By definition $\phi(a) \in \overline{G}$, so by closure $\langle \phi(a) \rangle \subseteq \overline{G}$. (\subseteq) Let $b \in \overline{G}$. Since ϕ is onto and $G = \langle a \rangle$, there exists some $k \in \mathbb{Z}$ with $\phi(a^k) = b$. By 2, $[\phi(a)]^k = b$, and so $b \in \langle \phi(a) \rangle$. (\Leftarrow) Assume that $\overline{G} = \langle \phi(a) \rangle$. We must show $G = \langle a \rangle$. (\supseteq) Since $a \in G$, by closure $\langle a \rangle \subseteq G$. (\subseteq) Let $b \in G$. Since $\overline{G} = \langle \phi(a) \rangle$, there exists some $k \in \mathbb{Z}$ such that $\phi(b) = [\phi(a)]^k$. By 2, $\phi(b) = \phi(a^k)$. But ϕ is 1-1, so $b = a^k$. Therefore $G = \langle a \rangle$.

to $\langle a \rangle$, it is an isomorphism from $\langle a \rangle$ to $\langle \phi(a) \rangle$. Then apply 4.

Theorem 6.2 Properties of Isomorphisms Acting on Elements.

Let G, \overline{G} be groups with respective identities e, \overline{e} . Let $k, n \in \mathbb{Z}$ and $a, b \in G$. Then

1. $\phi(e) = \overline{e};$ 2. $\phi(a^n) = [\phi(a)]^n;$ 3. $ab = ba \text{ iff } \phi(a)\phi(b) = \phi(b)\phi(a);$ 4. $G = \langle a \rangle \text{ iff } \overline{G} = \langle \phi(a) \rangle;$ 5. $|a| = |\phi(a)|;$ and 6. $|\{x \in G \mid x^k = b\}| = |\{x \in \overline{G} \mid x^k = \phi(b)\}|.$

Proof of 6. It suffices to show that $x \in G$ is a solution of $x^k = b$ in G iff $\phi(x) \in \overline{G}$ is a solution of $x^k = \phi(b)$ in \overline{G} . This is because ϕ is a bijection. Let $x, b \in G$, and let $k \in \mathbb{Z}$. Then

 $x^k = b$ if and only if $\phi(x^k) = \phi(b)$ since ϕ is a bijective function if and only if $[\phi(x)]^k = \phi(b)$ by **2**.