Group Members: __

Isomorphisms Versus Homomorphisms

Let $\phi: G \to \overline{G}$ be a function, where G and \overline{G} are groups.

Property 1. ϕ is a bijection.

Property 2. ϕ is operation-preserving; i.e., $\forall x, y \in G$, $\phi(xy) = \phi(x)\phi(y)$.

Definition. ϕ is a group isomorphism if it has Properties 1&2, and we say $G \approx \overline{G}$.

Definition. ϕ is a *group homomorphism* if it has Property 2.

Definition. The kernel of a homomorphism $\phi: G \to \overline{G}$ is the set

$$\operatorname{Ker} \phi = \phi^{-1}(\overline{e}) = \{ x \in G \, | \, \phi(x) = \overline{e} \},\$$

where \overline{e} is the identity element of \overline{G} . The kernel is the set of elements of G that map to the identity element of \overline{G} . This is the *preimage* of \overline{e} under ϕ .

(1) Define $\phi: \mathbb{Z} \to \mathbb{Z}_2$ by

$$\phi(x) = \begin{cases} 0 & \text{if } x \text{ is even,} \\ 1 & \text{if } x \text{ is odd.} \end{cases}$$

- (a) Does ϕ have Property 1, and why?
- (b) Does ϕ have Property 2? If so prove it.
- (c) What is the kernel of ϕ ?
- (d) What are $\phi^{-1}(0)$ and $\phi^{-1}(1)$?

(2) Define $G = \{ax + b \mid a, b \in \mathbb{R}\}$ to be the set of degree 0 and 1 polynomials in the variable x over the real numbers. Define the function $\phi : G \to G$ by

$$\phi(ax+b) = \frac{d}{dx}(ax+b).$$

Recall (e.g., Math 332) that ϕ is a linear transformation.

- (a) Does ϕ have Property 1, and why?
- (b) Does ϕ have Property 2? If so prove it.
- (c) What is the kernel of ϕ ?
- (d) What are $\phi^{-1}(0)$, $\phi^{-1}(5)$, and $\phi^{-1}(x)$?

(3) Let $m, n \in \mathbb{Z}^+$. Recall that $\mathbb{R}^m, \mathbb{R}^n$ can be viewed as column vectors over the real numbers. Let A be an $m \times n$ matrix with real coefficients, and define $\phi : \mathbb{R}^n \to \mathbb{R}^m$ to be the linear transformation

$$\phi(\mathbf{x}) = A\mathbf{x}.$$

Use what you know about matrices to answer the following.

- (a) Under what condition does ϕ have Property 1?
- (b) Does ϕ have Property 2? If so prove it.
- (c) What is the matrix theory/linear algebra name for the kernel of ϕ ?
- (d) When does the equation $A\mathbf{x} = \mathbf{b}$ have exactly one solution? More than one solution? No solutions? Try to use group theory language.

Theorem 10.1: Properties of Homomorphisms

Let $\phi: G \to \overline{G}$ be a group homomorphism. Let G have identity e and \overline{G} have identity \overline{e} . Then

- 1. $\phi(e) = \overline{e}$.
- **2.** $\phi(g^n) = (\phi(g))^n$ for all $n \in \mathbb{Z}$.
- **3.** If |g| is finite, then $|\phi(g)|$ divides |g|.
- **4.** Ker ϕ is a subgroup of G.
- **5.** $\phi(a) = \phi(b)$ iff $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.
- **6.** If $\phi(g) = g'$, then $\phi^{-1}(g') = \{x \in G \mid \phi(x) = g'\} = g \text{Ker } \phi$.

Theorem 10.2: Properties of Subgroups Under Homomorphisms

Let $\phi: G \to \overline{G}$ be a group homomorphism, and let $H \leq G$. Let G have identity e and \overline{G} have identity \overline{e} . Then

- **1.** $\phi(H) = {\phi(h) | h \in H}$ is a subgroup of \overline{G} .
- **2.** If H is cyclic, then $\phi(H)$ is cyclic.
- **3.** If H is Abelian, then $\phi(H)$ is Abelian.
- **4.** If $H \triangleleft G$, then $\phi(H) \triangleleft \phi(G)$.
- **5** If $|\operatorname{Ker} \phi| = n$, then ϕ is an n-to-1 mapping from G onto $\phi(G)$.
- **6.** If |H| = n, then $|\phi(H)|$ divides n.
- 7. If $\overline{K} \leq \overline{G}$, then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\} \leq G$.
- **8.** If $\overline{K} \triangleleft \overline{G}$, then $\phi^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\} \triangleleft G$.
- **9.** If ϕ is onto and Ker $\phi = \{e\}$, then ϕ is an isomorphism from G to \overline{G} .

Corollary: Kernels are Normal: Set $K = \{\overline{e}\}\$ in Property 8 to see that $\operatorname{Ker} \phi = \phi^{-1}(\overline{e}) \triangleleft G$.