Group Members: _____

(1) Without referring to the book, prove Theorem 10.1 Part 4: Ker ϕ is a subgroup of G when $\phi : G \to \overline{G}$ is a homomorphism. Use the 1-step or 2-step subgroup test. (Thm. 10.1 Part 2 is helpful.)

(2) Prove the reverse implication in Part 5 of Theorem 10.1. That is, $a \text{Ker } \phi = b \text{Ker } \phi \Rightarrow \phi(a) = \phi(b)$ for any homomorphism $\phi: G \to \overline{G}$. (Use Part 5 of the p.139 Lemma.)

(3) Without referring to the book, prove Theorem 10.2 Part 7, that is, if $\overline{K} \leq \overline{G}$, then $\phi^{-1}(\overline{K}) \leq G$. (Part 8 states that " \leq " can be replaced by " \triangleleft " in both places.)

(4) Define the homomorphism $\phi: D_4 \to \mathbb{Z}_{10}$ by sending all rotations to 0 and letting $\phi(H) = 5$.

- (a) Compute $D_4/\operatorname{Ker} \phi$ and $\phi(D_4)$.
- (b) Are $D_4/\text{Ker}\phi$ and $\phi(D_4)$ the same size? Isomorphic? If so give an isomorphism.

(5) Define the homomorphism $\phi: D_4 \to \mathbb{Z}_2 \oplus \mathbb{Z}_2$ by $\phi(R_0) = \phi(R_{180}) = (0,0), \ \phi(R_{90}) = (1,0)$, and $\phi(D) = (0,1)$.

- (a) Finish the definition of ϕ for all elements of D_4 .
- (b) Compute $D_4/\operatorname{Ker} \phi$ and $\phi(D_4)$.
- (c) Are $D_4/\text{Ker}\phi$ and $\phi(D_4)$ the same size? Isomorphic? If so give an isomorphism.

Theorem 10.3: First Isomorphism Theorem

Let $\phi : G \to \overline{G}$ be a group homomorphism. Then the mapping from $G/\operatorname{Ker} \phi$ to $\phi(G)$, given by $g\operatorname{Ker} \phi \to \phi(g)$, is an isomorphism, so that $G/\operatorname{Ker} \phi \approx \phi(G)$.

Corollary If $\phi: G \to \overline{G}$ is a homomorphism, then $|\phi(G)|$ divides both |G| and $|\overline{G}|$. (6) For every normal subgroup N of \mathbb{Z}_{15} , define a homomorphism $\phi : \mathbb{Z}_{15} \to \mathbb{Z}_{15}$ with Ker $\phi = N$. (See Exercise 41 for a more general statement about the number of homomorphisms from \mathbb{Z}_n to \mathbb{Z}_k .)

Theorem 10.4: Normals are Kernel

Every normal subgroup of a group G is the kernel of a homomorphism of G. In particular, a normal subgroup N is the kernel of the mapping $g \to gN$ from G to G/N.

(7) For at least 5 normal subgroups N of D_6 (plane symmetries of the hexagon), define a homomorphism $\phi: D_6 \to \overline{G}$ with Ker $\phi = N$. Write \overline{G} in a commonly used form such as \mathbb{Z}_2 or $\{e\}$ rather than D_6/N . (Hint: $\{R_0, R_{120}, R_{240}\} \triangleleft D_6$.)