Group Members: _____

Break.

Cycle Notation for Permutations.

I. Graphical representation of cycle structure

II. Cycles operating as functions on elements

III. (Right-associative) composition of cycles

Theorem 5.1. Every permutation can be written as a product of disjoint cycles. (By the deterministic algorithm described in Group Activity 5A)

(1) Consider two disjoint cycles, $\sigma = (124)$ and $\tau = (357)$. Convert both $\sigma\tau$ and $\tau\sigma$ into two-line notation. Do the same thing for $\alpha = (245)$ and $\beta = (345)$. What do you notice?

(2a) Compute the order of (123456).

- (2b) Compute the order of $\sigma \tau$ from (1).
- (2c) Compute the order of (124)(35).

Break.

Theorem 5.2 Disjoint Cycles Commute. If the pair of cycles $\alpha = (a_1 a_2 \dots a_m)$ and $\beta = (b_1 b_2 \dots b_n)$ have no entries in common, then $\alpha\beta = \beta\alpha$.

Theorem 5.3 Order of a Permutation. The order of a permutation is the least common multiple of the lengths of the cycles in disjoint cycle form.

(3) Write the permutation (15)(14)(13)(12) as a product of disjoint cycles following the discussion of cycle notation in I–III above. Write the permutation $(a_1 a_m)(a_1 a_{m-1})\cdots(a_1 a_3)(a_1 a_2)$ as the product of disjoint cycles. Is this process always reversible? Set up the skeleton of a proof by induction, showing the base case and the inductive hypothesis.

Break.

Theorem 5.4 Product of 2-Cycles. Every permutation in S_n , n > 1, is a product of 2-cycles. *Proof sketch.* Step 1. Use Thm. 5.1 to write the permutation in disjoint cycle notation. Step 2. Convert each cycle to a product of 2-cycles as in (3).

(4) Define ε to be the empty cycle, that is, the identity permutation in S_n . The list of equal permutation pairs below are *rewrite rules* used to convert between all possible representations of ε as products of 2-cycles. Show by exhaustive mapping of $\{a, b, c, d\}$ that the last two pairs in the list are valid rewrite rules.

 $\begin{array}{l} (a \ b) \ \mathrm{and} \ (b \ a) \\ \varepsilon \ \mathrm{and} \ (a \ b)(a \ b) \\ (a \ b)(b \ c) \ \mathrm{and} \ (a \ c)(a \ b) \\ (a \ c)(c \ b) \ \mathrm{and} \ (b \ c)(a \ b) \\ (a \ b)(c \ d) \ \mathrm{and} \ (c \ d)(a \ b) \end{array}$

(5) Use the rewrite rules of (4) to reduce the following permutation to the identity element ε : (14)(23)(12)(14)(24)(23)

Break.

Lemma. If $\varepsilon = \beta_1 \beta_2 \cdots \beta_r$, where the β 's are 2-cycles, then r is even.

Proof sketch. Let $i \in \{1, ..., n\}$ be the smallest number in any of the 2-cycles. Use the rewrite rules to move strictly decrease the rightmost occurrence of i. Eventually i must cancel via an operation $(ij)(ij) = \varepsilon$; otherwise only the leftmost 2-cycle contains i, and the permutation is not the identity.

Break.

Theorem 5.5. Always even or always odd

If a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even (odd) number of 2-cycles. In symbols, if

 $\alpha = \beta_1 \beta_2 \cdots \beta_4$ and $\alpha = \gamma_1 \gamma_2 \cdots \gamma_s$,

where the β 's and the γ 's are 2-cycles, then r and s are both even or both odd.

Theorem 5.6 Even Permutations form a Group

The set of even permutations in S_n (called the alternating group A_n) forms a subgroup of S_n . *Proof.* A straightforward exercise using properties discussed above.

Theorem 5.7. For n > 1, A_n has order n!/2.

Proof sketch. Prove that the function $f: A_n \to S_n \setminus A_n$ defined by $f(\alpha) = (12)\alpha$ is a bijection.