
Math 430-01 (Ellis) Group Activity 5C: Permutation Groups Spring 2011

Group Members:

Break.

Cycle Notation for Permutations.
I. Graphical representation of cycle structure
II. Cycles operating as functions on elements
III. (Right-associative) composition of cycles

Theorem 5.1. Every permutation can be written as a product of disjoint cycles. (By the deter-
ministic algorithm described in Group Activity 5A)

(1) Consider two disjoint cycles, σ = (1 2 4) and τ = (3 5 7). Convert both στ and τσ into two-line
notation. Do the same thing for α = (2 4 5) and β = (3 4 5). What do you notice?

(2a) Compute the order of (1 2 3 4 5 6).
(2b) Compute the order of στ from (1).
(2c) Compute the order of (1 2 4)(3 5).

Break.

Theorem 5.2 Disjoint Cycles Commute. If the pair of cycles α = (a1 a2 . . . am) and β =
(b1 b2 . . . bn) have no entries in common, then αβ = βα.

Theorem 5.3 Order of a Permutation. The order of a permutation is the least common multiple
of the lengths of the cycles in disjoint cycle form.
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(3) Write the permutation (1 5)(1 4)(1 3)(1 2) as a product of disjoint cycles following the discussion
of cycle notation in I–III above. Write the permutation (a1 am)(a1 am−1) · · · (a1 a3)(a1 a2) as the
product of disjoint cycles. Is this process always reversible? Set up the skeleton of a proof by
induction, showing the base case and the inductive hypothesis.

Break.

Theorem 5.4 Product of 2-Cycles. Every permutation in Sn, n > 1, is a product of 2-cycles.
Proof sketch. Step 1. Use Thm. 5.1 to write the permutation in disjoint cycle notation.
Step 2. Convert each cycle to a product of 2-cycles as in (3).

(4) Define ε to be the empty cycle, that is, the identity permutation in Sn. The list of equal
permutation pairs below are rewrite rules used to convert between all possible representations of ε
as products of 2-cycles. Show by exhaustive mapping of {a, b, c, d} that the last two pairs in the list
are valid rewrite rules.
(a b) and (b a)
ε and (a b)(a b)
(a b)(b c) and (a c)(a b)
(a c)(c b) and (b c)(a b)
(a b)(c d) and (c d)(a b)

(5) Use the rewrite rules of (4) to reduce the following permutation to the identity element ε:
(1 4)(2 3)(1 2)(1 4)(2 4)(2 3)

Break.

Lemma. If ε = β1β2 · · ·βr, where the β’s are 2-cycles, then r is even.
Proof sketch. Let i ∈ {1, . . . , n} be the smallest number in any of the 2-cycles. Use the rewrite rules
to move strictly decrease the rightmost occurrence of i. Eventually i must cancel via an operation
(ij)(ij) = ε; otherwise only the leftmost 2-cycle contains i, and the permutation is not the identity.
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Break.

Theorem 5.5. Always even or always odd
If a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every
decomposition of α into a product of 2-cycles must have an even (odd) number of 2-cycles. In
symbols, if

α = β1β2 · · ·β4 and α = γ1γ2 · · · γs,

where the β’s and the γ’s are 2-cycles, then r and s are both even or both odd.

Theorem 5.6 Even Permutations form a Group
The set of even permutations in Sn (called the alternating group An) forms a subgroup of Sn.
Proof. A straightforward exercise using properties discussed above.

Theorem 5.7. For n > 1, An has order n!/2.
Proof sketch. Prove that the function f : An → Sn \An defined by f(α) = (12)α is a bijection.


