Group Members: ___

Definition. An isomorphism ϕ from a group G to a group \overline{G} is a bijection from G to \overline{G} that preserves the operation. That is,

$$\phi(ab) = \phi(a)\phi(b)$$
 for all a, b in G .

If there is an isomorphism from G onto \overline{G} , we say that G and \overline{G} are isomorphic and write $G \approx \overline{G}$.

For problems (1)-(3) exhaustively describe the isomorphisms for these small groups.

- (1) Find an isomorphism from $\{-1,1\}$ under multiplication to \mathbb{Z}_2 .
- (2) Find two distinct isomorphisms from the cyclic subgroup of rotations in D_3 to \mathbb{Z}_3 .

(3) Let G be the group $\{(0,0),(1,0),(0,1),(1,1)\}$ under coordinate-wise addition mod 2. Find an isomorphism between G and the group generated by the 180 degree rotations of the tetrahedron. Is this isomorphism unique?

(4) Suppose we were to write down the Cayley tables of two isomorphic groups G and \overline{G} . How can we understand that the two Cayley tables are essentially the same?

General Procedure for Proving a Group Isomorphism

- **Step 1.** Define the candidate mapping ϕ from G to \overline{G} .
- **Step 2.** Prove that ϕ is one-to-one.
- **Step 3.** Prove that ϕ is onto.
- **Step 2.** Prove that for all $a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$.

Definition. An automorphism is an isomorphism from a group to itself.

(5) Prove that $\phi(x) = \sqrt{x}$ is an automorphism on \mathbb{R}^+ , the group of positive real numbers under multiplication.

Basic Proofs of $G \not\approx \overline{G}$:

- 1. Prove that $|G| \neq |\overline{G}|$ (finite or infinite case).
- 2. Or, prove $\exists a, b \in G$ with $\phi(ab) \neq \phi(a)\phi(b)$.
- (6) Prove that U(8) is not isomorphic to U(10).

(7) Prove that S_4 is not isomorphic to D_{12} .