Group Members: __

Definition: Coset of H in G

Let $a \in G$ and let H be a subgroup of a group G. The left coset of H in G containing a is

$$aH := \{ah \mid h \in H\},\$$

and the $right \ coset$ of H in G containing a is

$$Ha := \{ ha \mid h \in H \}.$$

If a coset contains a, then a is a coset representative of that coset. For later use, define $aHa^{-1} = \{aha^{-1} \mid h \in H\}$.

Method for computing all cosets of H in G.

- (I) Pick an element $a \in G$ that has not appeared yet in any coset.
- (II) Determine/compute the coset containing this element a by group operation with h for all $h \in H$ (ah for left cosets, ha for right cosets).
- (III) Stop when all elements of G appear in a coset. Write your answers in the form $aH = \ldots$, $bH = \ldots$, etc.
- (1) Determine all of the left cosets and all of the right cosets of $2\mathbb{Z}$ (the even integers) in the integers \mathbb{Z} (under addition). What do you notice?

(2) Refer to page 105 for this question. Let $G = A_4$ and let $H = \{\alpha_1, \alpha_5, \alpha_9\}$. Compute all of the left cosets of H in G in the following fashion:

(3) Repeat (1) except this time compute the right cosets of $\{\alpha_1, \alpha_5, \alpha_9\}$ in A_4 .

Lemma: Properties of Cosets ("Page 139 Lemma").

Let H be a subgroup of a group G, and let $a, b \in G$. Then,

- 1. $a \in aH$,
- 2. aH = H iff $a \in H$,
- 3. aH = bH or $aH \cap bH = \emptyset$,
- 4. $aH = bH \text{ iff } a^{-1}b \in H$,
- 5. |aH| = |bH|,
- 6. $aH = Ha \text{ iff } H = aHa^{-1},$
- 7. $aH \leq G \text{ iff } a \in H$.
- (4) Why does the reverse direction $(a \in H \Rightarrow aH = H)$ of the Lemma part 2 follow directly from the permutations constructed for the proof of Cayley's Theorem? (Hint: consider the mapping $T_a: H \to H$ defined by $T_a(h) = ah$.)

(5) Repeat the "Method for computing all cosets of H in G" on the top of the first page for Question (2), but do not pick any of the elements a that you used before. Compare the resulting cosets to the Lemma parts 3, 4, and 5.

(6) In questions (2-3), identify the cosets for which aH = Ha.

Left cosets partition G. From the Lemma we know that (i) the left cosets of H in G are the same size and nonempty, (ii) the union of the left cosets of H in G is G, and (iii) distinct left cosets are *pairwise disjoint*. Therefore the set of left cosets of G is a *partition* of G (see p.17). When G is finite there is a finite list a_1H, \ldots, a_rH of all distinct left cosets, and

$$\sum_{i=1}^{r} |a_i H| = |G| \quad \text{(all } a \in G \text{ appear in some coset)}$$

$$r \cdot |H| = |G| \quad \text{(all cosets have the same size)},$$

and so the order of a subgroup H divides the order of the group G when |G| is finite! This is Lagrange's Theorem.

Note: we could have stated the previous paragraph in terms of right cosets.