Group Members:

Definition: Product of Subgroups

Let H, K be subgroups of a group G. Then the product HK is defined as

 $HK := \{hk \mid h \in H \text{ and } k \in K\}.$

Definition: Internal Direct Product

Let H, K be subgroups of a group G. We say that G is the *internal direct product* of H and K, written $G = H \times K$, provided

(i) $H \lhd G$ and $K \lhd G$, (ii) G = HK, and (iii) $H \cap K = \{e\}$.

Facts when $G = H \times K$

- The order of G is $|H| \cdot |K|$.
- $G = H \times K \approx H \oplus K.$

Question. Why define internal direct products? **Answer.** To decompose a group based on its internal structure.

Decomposition Technique. Look for two normal subgroups H, K of G.

Verify that HK = G.

Verify that $H \cap K = \{e\}$.

Note: only look for H and K with $|G| = |H| \cdot |K|$. By iterating inductively on H or K, we can get $H = H_1 \times H_2$ and $G = H_1 \times H_2 \times K$, etc., for the following definition and theorem.

Definition: $H_1 \times \cdots \times H_n$

Let H_1, H_2, \ldots, H_n be a finite collection of normal subgroups of G. We say that G is the *internal direct product* of H_1, H_2, \ldots, H_n and write $G = H_1 \times H_2 \times \cdots \times H_n$ if

1. $G = H_1 H_2 \cdots H_n = \{h_1 h_2 \cdots h_n \mid h_i \in H_i\}$, and 2. $(H_1 H_2 \cdots H_i) \cap H_{i+1} = \{e\}$ for $i = 1, 2, \dots, n = 1$.

Theorem 9.6: $H_1 \times \cdots \times H_n \approx H_1 \oplus \cdots \oplus H_n$

If a group G is the internal direct product of a finite number of subgroups H_1, \ldots, H_n , then G is isomorphic to the external direct product of H_1, \ldots, H_n .

(1) For this question, $G = \mathbb{Z}_6$, $H = \langle 2 \rangle$, and $K = \langle 3 \rangle$.

- (a) Determine whether $H, K \triangleleft G$.
- (b) Write down all elements of HK.
- (c) Write down the elements of $H \cap K$.
- (d) Is $G = H \times K$?

(2) Same as (1) except $G = S_3$, $H = \langle (12) \rangle$, and $K = \langle (23) \rangle$.

(3) Same as (1) except $G = S_3$, $H = \langle (12) \rangle$, and $K = \langle (123) \rangle$.

- (4) Let $G = \mathbb{Z}_{30}$ (note that $30 = 2 \cdot 3 \cdot 5$). Let $H_1 = \langle 15 \rangle$, $H_2 = \langle 10 \rangle$, and $H_3 = \langle 6 \rangle$.
- (a) Determine whether $H_1, H_2, H_3 \triangleleft G$.
- (b) What is gcd(15, 10, 6)? Referring to Theorem 0.2 on p.5, how do we know that $G = H_1 H_2 H_3$?
- (c) Write down the elements of $H_1 \cap H_2$.
- (d) Compute gcd(15, 10), and from Theorem 0.2 deduce the elements of the set H_1H_2 .
- (e) Write down the elements of $(H_1H_2) \cap H_3$.
- (f) Is $G = H_1 \times H_2 \times H_3$ according to the definition?
- (g) Why is this consistent with Corollary 2 of Theorem 8.2 on p.159?

Similarly, for an arbitrary finite Abelian group G, we can:

(i) Write $|G| = p^k m$, where $p \not| m$,

(ii) Find an element $x \in G$ with order p^j for j large as possible, and

(iii) Show that $G = \langle x \rangle \times K$ for a normal subgroup K of G with $|K| = mp^{k-j}$.

Note: Question (4) introduces a major idea behind the classification of finite Abelian groups. \mathbb{Z}_{30} has a known structure: we know there is an order 5 element $6 \in \mathbb{Z}_{30}$, and we can pull $\langle 6 \rangle$ out as an isomorphic copy of \mathbb{Z}_5 .